
ApeironSanctury

Smart Contract Security Audit

No. 202312071600

Dec 7th, 2023

SECURING BLOCKCHAIN ECOSYSTEM

WWW.BEOSIN.COM


```

ApeironSanctury Security Audit

Page 2 of 31

Contents

1 Overview ........................................................................................................................................................... 5

1.1 Project Overview .................................................................................................................................... 5

1.2 Audit Overview ....................................................................................................................................... 5

1.3 Audit Method .......................................................................................................................................... 5

2 Findings ............................................................................................................................................................ 7

[ApeironSanctury-01] OpenZeppelin Contracts vulnerable to ECDSA signature malleability ............ 8

[ApeironSanctury-02] TicketMinting contracts can be drained of fees ............................................... 9

[ApeironSanctury-03] BornPlanet contracts can be drained of fees ..................................................11

[ApeironSanctury-04] BreedPlanet contracts can be drained of fees ............................................... 13

[ApeironSanctury-05] The requestBornWithAddress function lacks permission control ................16

[ApeironSanctury-06] TicketMinting contract has a randomnumber manipulation vulnerability ...18

[ApeironSanctury-07] BornPlanet contract has a random number manipulation vulnerability ....... 19

[ApeironSanctury-08] BreedPlanet contract has a random numbermanipulation vulnerability .....21

[ApeironSanctury-09] NFT will beminted for free without limit ......................................................... 22

2 Appendix ........................................................................................................................................................ 24

2.1 Vulnerability Assessment Metrics and Status in Smart Contracts .................................................24

2.2 Audit Categories ................................................................................................................................. 27

2.3 Disclaimer ............................................................................................................................................29

2.4 About Beosin ....................................................................................................................................... 30



```

ApeironSanctury Security Audit

Page 3 of 31

Summary of Audit Results

After auditing, 3 Critical-risk,3 High-risk, 2 Medium-risk, 1 Low-risk were identified in the

ApeironSanctury project. Specific audit details will be presented in the Findings section. Users should

pay attention to the following aspects when interacting with this project:

Critical
Fixed : 3 Acknowledged: 0

High
Fixed : 3 Acknowledged: 0

Medium
Fixed : 1 Acknowledged: 1

Low
Fixed: 1 Acknowledged: 0

 Risk Description:

1. The project is upgraded by using UUPS agent, please keep the private key in the project side to

avoid the leakage of the private key leading to themodification of the realization contract.

2. Since ApeironSanctury-08 is not repaired, hackers can manipulate random numbers and generate

NFTs with high-quality properties.


```

ApeironSanctury Security Audit

Page 4 of 31

 Project Description:

Basic Token Information

Token name APEA

Token symbol ApeironApostle

Pre-mint

Origin Token Id from 1001-4600

Zombie Token Id from 4601-4900

Other Token Id from 10001

Total supply Total volume not constant

Token type ERC-721

Table 1 APEA token info

Business overview

ApeironApostle is an ERC-721 contract; The main function of ApeironApostleSeasonMinting and

ApeironApostleSeasonMintingCaller is to sell NFTs, which can be purchased by users with a signature;

The ApeironApostleTicketMinting contract is used to exchange a user's ticket for an NFT, which

destroys the user's ticket before the NFT can be minted;The BornPlanet and BreedPlanet contracts

implement a planet's born and breed, and the planet relies on VRF's random numbers to compute the

planet's attributes when performing the born and breed.



```

ApeironSanctury Security Audit

Page 5 of 31

1 Overview

1.1 Project Overview

Project Name ApeironSanctury

Project language Solidity

Platform Ronin chain/Poly chain etc

GitHub https://github.com/FoonieMagus/ApeironSancturyContract/tree/dev/brian/roni
n_migration

Commit Hash
ddade5a9ff80c7cc40c8873a28e3c6f9f8d22cff(Initial)

38ab98ae24bd31fffeb52aaa3bf67e048e6220c1(Final)

Audit scope

ApeironApostle.sol

ApeironApostleSeasonMinting.sol

ApeironApostleSeasonMintingCaller.sol

ApeironApostleTicketMinting.sol

ApostleMeta.sol

BornPlanet.sol

BreedPlanet.sol

BreedPlanetBase.sol

BreedPlanetData.sol

PlanetAttributeManager.sol

contracts/utils/ERC721Nonce.sol

contracts/utils/IERC721State.sol

1.2 Audit Overview

Audit work duration: Nov 9, 2023 – Dec 7, 2023

Audit team: Beosin Security Team

1.3 Audit Method

The audit methods are as follows:

1. Formal Verification

Formal verification is a technique that uses property-based approaches for testing and verification.

Property specifications define a set of rules using Beosin's library of security expert rules. These rules


```

ApeironSanctury Security Audit

Page 6 of 31

call into the contracts under analysis and make various assertions about their behavior. The rules of

the specification play a crucial role in the analysis. If the rule is violated, a concrete test case is

provided to demonstrate the violation.

2. Manual Review

Using manual auditing methods, the code is read line by line to identify potential security issues. This

ensures that the contract's execution logic aligns with the client's specifications and intentions,

thereby safeguarding the accuracy of the contract's business logic.

Themanual audit is divided into three groups to cover the entire auditing process:

The Basic Testing Group is primarily responsible for interpreting the project's code and conducting

comprehensive functional testing.

The Simulated Attack Group is responsible for analyzing the audited project based on the collected

historical audit vulnerability database and security incident attack models. They identify potential

attack vectors and collaborate with the Basic Testing Group to conduct simulated attack tests.

The Expert Analysis Group is responsible for analyzing the overall project design, interactions with third

parties, and security risks in the on-chain operational environment. They also conduct a review of the

entire audit findings.

3. Static Analysis

Static analysis is a method of examining code during compilation or static analysis to detect issues.

Beosin-VaaS can detect more than 100 common smart contract vulnerabilities through static analysis,

such as reentrancy and block parameter dependency. It allows early and efficient discovery of

problems to improve code quality and security.



```

ApeironSanctury Security Audit

Page 7 of 31

2 Findings

Index Risk description Severity level Status

ApeironSanctury-01 OpenZeppelin Contracts vulnerable to
ECDSA signature malleability

Low Fixed

ApeironSanctury-02 TicketMinting contracts can be drained
of fees

High Fixed

ApeironSanctury-03 BornPlanet contracts can be drained of
fees

High Fixed

ApeironSanctury-04 Missingmint function for ORIGINAL High Fixed

ApeironSanctury-05 The requestBornWithAddress function
lacks permission control

Medium Fixed

ApeironSanctury-06 TicketMinting contract has a random
number manipulation vulnerability

Critical Fixed

ApeironSanctury-07 BornPlanet contract has a random
number manipulation vulnerability

Critical Fixed

ApeironSanctury-08 BreedPlanet contract has a random
number manipulation vulnerability

Medium Acknowledged

ApeironSanctury-09 NFT will beminted for free without limit Critical Fixed


```

ApeironSanctury Security Audit

Page 8 of 31

Finding Details:

[ApeironSanctury-01] OpenZeppelin Contracts vulnerable to ECDSA
signature malleability

Severity Level Low

Type General Vulnerability

Lines ApeironApostleSeasonMintingCaller.sol

Description Because the project is using OpenZeppelin version 4.5.0, it will be subject to

ECDSAmalleability attacks.

Recommendation It is recommended to use the latest version of OpenZeppelin.

Status Fixed. The project hasmodified the OpenZeppelin version to 4.7.3.



```

ApeironSanctury Security Audit

Page 9 of 31

[ApeironSanctury-02] TicketMinting contracts can be drained of
fees

Severity Level High

Type Business Security

Lines ApeironApostleTicketMinting.sol#224-310

Description There is no restriction on user-input data in the requestTicketMinting function.

This could allow users to make multiple requests with the same data. Since the

contract incurs fees when requesting random numbers from the Ronin VRF,

attackers couldmaliciously request to deplete the funds in the contract.

function requestTicketMinting(

address[] memory _ticketContractAddressArray,

uint256[] memory _ticketIdArray,

uint256[] memory _ticketCountArray

) external returns (bytes32) {

// init ticketMintingStructs

uint256 ticketCount;

for (uint256 i = 0; i < _ticketCountArray.length; i++) {...}

// create ticketMintingStruct

uint256 currentCount = 0;

for (uint256 i = 0; i < _ticketContractAddressArray.length;
i++) {...}

// uint256 requestId = requestRandomWords();

bytes32 requestId = _requestRandomness(

ronToUseInRandomness,

address(this)

);

// save the request info

TicketMintingRequestStructMap[requestId].userAddress =
msg.sender;

// hardhat do not support direct assign struct array


```

ApeironSanctury Security Audit

Page 10 of 31

for (uint256 i = 0; i < ticketMintingStructs.length; i++) {

TicketMintingRequestStructMap[requestId].ticketMinting
Structs.push(

ticketMintingStructs[i]

);

}

TicketMintingRequestStructMap[requestId].isDone = false;

// emit event

emit RequestTicketMinting(requestId);

return requestId;

}

Recommendation It is recommended that users pay a fee for requesting a VRF contract.

Status Fixed. The project has changed the code so that the user pays the handling fee.

_requireArgument(

msg.value >= ronToUseInRandomness,

"Insufficient ron fee"

);



```

ApeironSanctury Security Audit

Page 11 of 31

[ApeironSanctury-03] BornPlanet contracts can be drained of fees

Severity Level High

Type Business Security

Lines BornPlanet.sol#64-98

Description There is no restriction on user-input data in the requestMultiBorn function.

This could allow users to make multiple requests with the same data. Since the

contract incurs fees when requesting random numbers from the Ronin VRF,

attackers couldmaliciously request to deplete the funds in the contract.

function requestMultiBorn(uint256[] memory planetIdArray)
external {

uint256[] memory successPlanetArray = new uint256[](

planetIdArray.length

);

uint256[] memory failPlanetArray = new
uint256[](planetIdArray.length);

string[] memory failReasonArray = new
string[](planetIdArray.length);

uint256 successCounter = 0;

uint256 failCounter = 0;

// loop for each born

for (uint256 i = 0; i < planetIdArray.length; i++) {

// require planet is owned by msg.sender

require(

planetContract.ownerOf(planetIdArray[i]) ==
msg.sender,

"Planet is not owned"

);

userApprovedBornPlanet[planetIdArray[i]] = msg.sender;

// try catch can only used in external function

// using this.requestBornWithAddress msg.sender will
become contract address, so we need to pass userAddress


```

ApeironSanctury Security Audit

Page 12 of 31

try this.requestBornWithAddress(msg.sender,
planetIdArray[i]) {

successPlanetArray[successCounter] =
planetIdArray[i];

successCounter++;

} catch Error(string memory reason) {

failPlanetArray[failCounter] = planetIdArray[i];

failReasonArray[failCounter] = reason;

failCounter++;

}

}

emit RequestMultiBornSummary(

msg.sender,

successPlanetArray,

failPlanetArray,

failReasonArray

);

}

Recommendation It is recommended that users pay a fee for requesting a VRF contract.

Status Fixed. The project has changed the code so that the user pays the handling fee.

require(

msg.value >= ronToUseInRandomness *
planetIdArray.length,

"Insufficient ron fee"

);



```

ApeironSanctury Security Audit

Page 13 of 31

[ApeironSanctury-04] BreedPlanet contracts can be drained of fees

Severity Level High

Type Business Security

Lines BreedPlanet.sol#144-210

Description There is no restriction on user-input data in the requestBreedWithAnimus

function. This could allow users to make multiple requests with the same data.

Since the contract incurs fees when requesting random numbers from the

Ronin VRF, attackers could maliciously request to deplete the funds in the

contract.

function requestBreedWithAnimus(

uint256 planetAId,

uint256 planetBId,

uint256 animusUse,

bool shouldUseMiniBlackhole,

uint256 time,

bytes memory signature

) external returns (bytes32) {

bytes32 hash = keccak256(abi.encodePacked(msg.sender,
animusUse, time));

_requireArgument(

hash.toEthSignedMessageHash().recover(signature) ==
systemAddress &&

time + 10 minutes >= block.timestamp, //valid
signature period is 10 minutes

"Invalid signature"

);

return

_requestBreed(

planetAId,

planetBId,


```

ApeironSanctury Security Audit

Page 14 of 31

animusUse,

shouldUseMiniBlackhole

);

}

function _requestBreed(

uint256 planetAId,

uint256 planetBId,

uint256 animusUse,

bool shouldUseMiniBlackhole

) internal returns (bytes32) {

// dry run for check can breed

_breed(

msg.sender,

planetAId,

planetBId,

animusUse,

shouldUseMiniBlackhole,

true

);

// request rng for get random number

bytes32 requestHash = _requestRandomness(

ronToUseInRandomness,

address(this)

);

BreedStruct memory breedStruct = BreedStruct(

msg.sender,

planetAId,

planetBId,



```

ApeironSanctury Security Audit

Page 15 of 31

shouldUseMiniBlackhole,

false,

0

);

BreedStructMap[requestHash] = breedStruct;

animusUseMap[requestHash] = animusUse;

emit RequestBreed(requestHash);

return requestHash;

}

Recommendation It is recommended that users pay a fee for requesting a VRF contract.

Status Fixed. The project has changed the code so that the user pays the handling fee.

_requireArgument(

msg.value >= ronToUseInRandomness,

"Insufficient ron fee"

);


```

ApeironSanctury Security Audit

Page 16 of 31

[ApeironSanctury-05] The requestBornWithAddress function lacks
permission control

Severity Level Medium

Type Business Security

Lines BornPlanet.sol#110-118

Description Due to the lack of permission restrictions in the requestBornWithAddress

function, anyone can potentially perform a "born" operation on a user's planet.

function requestBornWithAddress(

address userAddress,

uint256 planetId

) external returns (bytes32) {

require(

userApprovedBornPlanet[planetId] == userAddress,

"Planet is not approved for born"

);

return _requestBorn(userAddress, planetId);

}

Recommendation
It is advisable to enhance the permissions for the requestBornWithAddress
function.

Status Fixed. The project added permissions to the requestBornWithAddress
function.

function requestBornWithAddress(

address userAddress,

uint256 planetId

) external returns (bytes32) {

// check planet is approved for born

require(

userApprovedBornPlanet[planetId] == userAddress,

"Planet is not approved for born"



```

ApeironSanctury Security Audit

Page 17 of 31

);

// check caller is this contract

require(msg.sender == address(this), "Caller is not this
contract");

return _requestBorn(userAddress, planetId);

}


```

ApeironSanctury Security Audit

Page 18 of 31

[ApeironSanctury-06] TicketMinting contract has a random number
manipulation vulnerability

Severity Level Critical

Type Business Security

Lines ApeironApostleTicketMinting.sol

Description when users use a ticket to mint an NFT, the user's ticket is not deducted in the

requestTicketMinting function. Instead, the deduction of the user's ticket

occurs after obtaining the random number. Therefore, a hacker could observe

the random numbers in the memory pool of the VRF contract during the

transaction initiation. If the NFT properties generated by the random number

are unfavorable, the hacker could prematurely transfer the ticket, causing the

callback failure of the Ronin VRF contract, until generated satisfactory NFT.

Recommendation
It is recommended that when a user requests a random number, the contract
deducts the user's ticket.

Status Fixed. The project side destroys the user's ticket when it makes the request.

ERC1155Burnable(_ticketContractAddressArray[i]).burn(

msg.sender, // burt from

_ticketIdArray[i], // burt ticket id

_ticketCountArray[i] // burn ticket count

);



```

ApeironSanctury Security Audit

Page 19 of 31

[ApeironSanctury-07] BornPlanet contract has a random number
manipulation vulnerability

Severity Level Critical

Type Business Security

Lines BornPlanet.sol#160-188

Description The _born function checks the ownership of the planetId when the user is doing

a BORN on the NFT. If a hacker observes an unsatisfactory random number

generated by a VRF contract in the memory pool, the hacker can move the NFT

corresponding to planetId away, causing the Ronin VRF contract callback to fail

until a satisfactory NFT is born.

function _born(

address userAddress,

uint256 planetId,

bool isDryRun // if isDryRun, not updatePlanetData

) internal {

IApeironPlanet.PlanetData memory planetData =
_getPlanetData(planetId);

// check can born

require(

planetContract.ownerOf(planetId) == userAddress,

"Planet is not owned"

);

require(planetData.bornTime == 0, "Planet already born");

require(_hasParent(planetId), "Planet has no parent");

require(

breedPlanetDataContract.getPlanetNextBornTime(planetId
) <

block.timestamp,

"Born time is pass for planetNextBornMap time"

);


```

ApeironSanctury Security Audit

Page 20 of 31

if (!isDryRun) {

// update planet.gene

uint256 geneId = _convertToGeneId(

_updateAttributesOnBorn(planetId)

);

// update planet as borned

planetContract.updatePlanetData(planetId, geneId, 0, 0,
3, true);

emit BornSuccess(planetId);

}

}

Recommendation
When a VRF contract callback is recommended, users do not have the right to
refuse.

Status Fixed. The project does not check the ownership of the planet during the
callback, and will perform born operations on the NFT even if the NFT is
transferred.

if (isDryRun) {

// only check when _requestBorn, not check when
_fulfillRandomSeed

require(

planetContract.ownerOf(planetId) == userAddress,

"Planet is not owned"

);

}



```

ApeironSanctury Security Audit

Page 21 of 31

[ApeironSanctury-08] BreedPlanet contract has a random number
manipulation vulnerability

Severity Level Medium

Type Business Security

Lines BreedPlanet.sol

Description When a user breeds on an NFT, the breed function checks whether the user's

fee is sufficient. If a hacker observes in the memory pool that the random

number generated by the VRF contract is unsatisfactory, the hacker can divert

the handling fee required for breed, causing the Ronin VRF contract callback to

fail until a satisfactory NFT is generated.

Recommendation
When a VRF contract callback is recommended, users do not have the right to
refuse.

Status Acknowledged. Description of the project side: Because NFT in breed, mainly
rely on the attributes of the parents, the influence of random numbers is not
very big, so the code is notmodified.


```

ApeironSanctury Security Audit

Page 22 of 31

[ApeironSanctury-09] NFT will be minted for free without limit

Severity Level Critical

Type Business Security

Lines ApeironApostleSeasonMinting.sol#356-404

Description In the _purchase function, since the NFT minting is ahead of the book update

and the starting entry function has no re-reentry check, it will result in unlimited

freeminting of the NFT.

function _purchase(

address _user,

SEASON_MINT_TYPE _mintType,

ApostleMeta.ApostleClass _apostleClass,

uint256 _dungeonApostleId,

uint256 _gene,

uint256 _iv,

uint256 _price

) internal {

bool isFreeMint = (_price == 0);

// transfer token if this is not free mint

if (!isFreeMint) {...}

// mint NFT

uint256 tokenId = apostleContract.safeMint(

_gene,

_iv,

ApeironApostle.MINT_TYPE.TYPE_OTHER, // mint type is
always TYPE_OTHER

_user

);

// update free mint count

if (isFreeMint) {



```

ApeironSanctury Security Audit

Page 23 of 31

addressFreeMintedMapping[_mintType][_user] += 1;

}

// update address minted class count

addressMintedClassMapping[_mintType][_user][

uint256(_apostleClass)

] += 1;

// update minted dungeon apostle id

mintedDungeonApostleIdMapping[_dungeonApostleId] =
tokenId;

Recommendation
1. Add reentry check.

2. The books are updated first, and then transfers are made.

Status Fixed. The project added reentrant check and transfer sequence.

if (isFreeMint) {

addressFreeMintedMapping[_mintType][_user] += 1;

}

// update address minted class count

addressMintedClassMapping[_mintType][_user][

uint256(_apostleClass)

] += 1;

// mint NFT

uint256 tokenId = apostleContract.safeMint(

_gene,

_iv,

ApeironApostle.MINT_TYPE.TYPE_OTHER, // mint type is
always TYPE_OTHER

_user

);

mintedDungeonApostleIdMapping[_dungeonApostleId] =
tokenId;


```

ApeironSanctury Security Audit

Page 24 of 31

2 Appendix

2.1 Vulnerability Assessment Metrics and Status in Smart Contracts

2.1.1 Metrics

In order to objectively assess the severity level of vulnerabilities in blockchain systems, this report

provides detailed assessment metrics for security vulnerabilities in smart contracts with reference to

CVSS 3.1 (Common Vulnerability Scoring System Ver 3.1).

According to the severity level of vulnerability, the vulnerabilities are classified into four levels:

"critical", "high", "medium" and "low". It mainly relies on the degree of impact and likelihood of

exploitation of the vulnerability, supplemented by other comprehensive factors to determine of the

severity level.

Impact

Likelihood
Severe High Medium Low

Probable Critical High Medium Low

Possible High Medium Medium Low

Unlikely Medium Medium Low Info

Rare Low Low Info Info



```

ApeironSanctury Security Audit

Page 25 of 31

2.1.2 Degree of impact

 Severe

Severe impact generally refers to the vulnerability can have a serious impact on the confidentiality,

integrity, availability of smart contracts or their economic model, which can cause substantial

economic losses to the contract business system, large-scale data disruption, loss of authority

management, failure of key functions, loss of credibility, or indirectly affect the operation of other

smart contracts associated with it and cause substantial losses, as well as other severe and mostly

irreversible harm.

 High

High impact generally refers to the vulnerability can have a relatively serious impact on the

confidentiality, integrity, availability of the smart contract or its economic model, which can cause a

greater economic loss, local functional unavailability, loss of credibility and other impact to the

contract business system.

 Medium

Medium impact generally refers to the vulnerability can have a relatively minor impact on the

confidentiality, integrity, availability of the smart contract or its economic model, which can cause a

small amount of economic loss to the contract business system, individual business unavailability and

other impact.

 Low

Low impact generally refers to the vulnerability can have a minor impact on the smart contract, which

can pose certain security threat to the contract business system and needs to be improved.

2.1.4 Likelihood of Exploitation

 Probable

Probable likelihood generally means that the cost required to exploit the vulnerability is low, with no

special exploitation threshold, and the vulnerability can be triggered consistently.

 Possible

Possible likelihood generally means that exploiting such vulnerability requires a certain cost, or there

are certain conditions for exploitation, and the vulnerability is not easily and consistently triggered.


```

ApeironSanctury Security Audit

Page 26 of 31

 Unlikely

Unlikely likelihood generally means that the vulnerability requires a high cost, or the exploitation

conditions are very demanding and the vulnerability is highly difficult to trigger.

 Rare

Rare likelihood generally means that the vulnerability requires an extremely high cost or the conditions

for exploitation are extremely difficult to achieve.

2.1.5 Fix Results Status

Status Description

Fixed The project party fully fixes a vulnerability.

Partially Fixed The project party did not fully fix the issue, but only mitigated the
issue.

Acknowledged The project party confirms and chooses to ignore the issue.



```

ApeironSanctury Security Audit

Page 27 of 31

2.2 Audit Categories

No. Categories Subitems

1 Coding Conventions

Compiler Version Security

Deprecated Items

Redundant Code

require/assert Usage

Gas Consumption

2 General Vulnerability

Integer Overflow/Underflow

Reentrancy

Pseudo-randomNumber Generator (PRNG)

Transaction-Ordering Dependence

DoS (Denial of Service)

Function Call Permissions

call/delegatecall Security

Returned Value Security

tx.origin Usage

Replay Attack

Overriding Variables

Third-party Protocol Interface Consistency

3 Business Security

Business Logics

Business Implementations

Manipulable Token Price

Centralized Asset Control

Asset Tradability

Arbitrage Attack

Beosin classified the security issues of smart contracts into three categories: Coding Conventions,

General Vulnerability, Business Security. Their specific definitions are as follows:

 Coding Conventions


```

ApeironSanctury Security Audit

Page 28 of 31

Audit whether smart contracts follow recommended language security coding practices. For example,

smart contracts developed in Solidity language should fix the compiler version and do not use

deprecated keywords.

 General Vulnerability

General Vulnerability include some common vulnerabilities that may appear in smart contract projects.

These vulnerabilities are mainly related to the characteristics of the smart contract itself, such as

integer overflow/underflow and denial of service attacks.

 Business Security

Business security is mainly related to some issues related to the business realized by each project, and

has a relatively strong pertinence. For example, whether the lock-up plan in the code match the white

paper, or the flash loan attack caused by the incorrect setting of the price acquisition oracle.

*Note that the project may suffer stake losses due to the integrated third-party protocol. This is not something

Beosin can control. Business security requires the participation of the project party. The project party and users

need to stay vigilant at all times.



```

ApeironSanctury Security Audit

Page 29 of 31

2.3 Disclaimer

The Audit Report issued by Beosin is related to the services agreed in the relevant service agreement.

The Project Party or the Served Party (hereinafter referred to as the "Served Party") can only be used

within the conditions and scope agreed in the service agreement. Other third parties shall not transmit,

disclose, quote, rely on or tamper with the Audit Report issued for any purpose.

The Audit Report issued by Beosin is made solely for the code, and any description, expression or

wording contained therein shall not be interpreted as affirmation or confirmation of the project, nor

shall any warranty or guarantee be given as to the absolute flawlessness of the code analyzed, the code

team, the business model or legal compliance.

The Audit Report issued by Beosin is only based on the code provided by the Served Party and the

technology currently available to Beosin. However, due to the technical limitations of any organization,

and in the event that the code provided by the Served Party is missing information, tampered with,

deleted, hidden or subsequently altered, the audit report may still fail to fully enumerate all the risks.

The Audit Report issued by Beosin in no way provides investment advice on any project, nor should it be

utilized as investment suggestions of any type. This report represents an extensive evaluation process

designed to help our customers improve code quality while mitigating the high risks in blockchain.


```

ApeironSanctury Security Audit

Page 30 of 31

2.4 About Beosin

Beosin is the first institution in the world specializing in the construction of blockchain

security ecosystem. The core team members are all professors, postdocs, PhDs, and Internet

elites from world-renowned academic institutions. Beosin has more than 20 years of research

in formal verification technology, trusted computing, mobile security and kernel security, with

overseas experience in studying and collaborating in project research at well-known

universities. Through the security audit and defense deployment of more than 2,000 smart

contracts, over 50 public blockchains and wallets, and nearly 100 exchanges worldwide,

Beosin has accumulated rich experience in security attack and defense of the blockchain field,

and has developed several security products specifically for blockchain.



Official Website
https://www.beosin.com

Telegram
https://t.me/beosin

Twitter
https://twitter.com/Beosin_com

Email
service@beosin.com

https://www.beosin.com
https://t.me/beosin
https://twitter.com/Beosin_com

	1 Overview
	1.1 Project Overview
	1.2 Audit Overview
	1.3 Audit Method

	2 Findings
	[ApeironSanctury-01] OpenZeppelin Contracts vulner
	[ApeironSanctury-02] TicketMinting contracts can b
	[ApeironSanctury-03] BornPlanet contracts can be d
	[ApeironSanctury-04] BreedPlanet contracts can be 
	[ApeironSanctury-05] The requestBornWithAddress fu
	[ApeironSanctury-06] TicketMinting contract has a 
	[ApeironSanctury-07] BornPlanet contract has a ran
	[ApeironSanctury-08] BreedPlanet contract has a ra
	[ApeironSanctury-09] NFT will be minted for free w

	2 Appendix
	2.1 Vulnerability Assessment Metrics and Status in
	2.2 Audit Categories
	2.3 Disclaimer
	2.4 About Beosin


