
Kalax

Smart Contract Security Audit

No. 202405211051

May 21th, 2024

SECURING BLOCKCHAIN ECOSYSTEM

WWW.BEOSIN.COM


```

Kalax Security Audit

Page 2 of 33

Contents

1 Overview ........................................................................................................................................................... 6

1.1 Project Overview .................................................................................................................................... 6

1.2 Audit Overview ....................................................................................................................................... 6

1.3 Audit Method .......................................................................................................................................... 6

2 Findings ............................................................................................................................................................ 8

[Kalax-01] Native token cannot be withdrawn from strategy contract .................................................9

[Kalax-02] The value of totalAllocPoint cannot bemodified directly ..................................................10

[Kalax-03] Centralization risk ..................................................................................................................11

[Kalax-04] Gas fee problem ..................................................................................................................... 12

[Kalax-05] WithdrawFee does not set a reasonable range .................................................................. 14

[Kalax-06] Compilation problems ........................................................................................................... 16

[Kalax-07] Pools should be updated ....................................................................................................... 17

[Kalax-08] Update the pool first, then set a new TokenPerBlock ........................................................18

[Kalax-09] TotalUserRevenue and rewardDebt are not updated .........................................................19

[Kalax-10] Function lacks check for depositing tokens and native tokens at the same time ...........21

[Kalax-11] Missing trigger events .............................................................................................................23

[Kalax-12] Redundant Code ..................................................................................................................... 24

[Kalax-13] Inappropriate data structure storage used ..........................................................................25

3 Appendix ........................................................................................................................................................ 26

3.1 Vulnerability Assessment Metrics and Status in Smart Contracts .................................................26

3.2 Audit Categories ................................................................................................................................. 29



```

Kalax Security Audit

Page 3 of 33

3.3 Disclaimer .. 31

3.4 About Beosin ... 32


```

Kalax Security Audit

Page 4 of 33

Summary of Audit Results

After auditing, 3 Medium items,6 Low items,and 4 info items were identified in the Kalax project.

Specific audit details will be presented in the Findings section. Users should pay attention to the

following aspects when interacting with this project:

Medium
Fixed : 3 Acknowledged: 0

Low
Fixed : 4 Acknowledged: 2

Info
Fixed :3 Acknowledged: 1

Notes:

 When users withdraw principal, a certain handling fee will be charged. The handling rate is set by

the project party and ranges from 0 to 0.2%.

 The Token contract mint all tokens to a EOA account during deployment, there is a certain risk of

centralization.The Vault contract owner can set the strategy contract. If the strategy contract is

set, the assets in the vault will be transferred to the strategy contract. The transfer of assets is

managed by the vault contract owner, and there is a certain degree of centralization risk. Users

should pay attention to the on-chain behavior of Token contract owner and Vault contract owner.



```

Kalax Security Audit

Page 5 of 33

Business overview:

Kalax is a multi-pool, multi-reward staking project that allows users to stake multiple assets, including

native token and other tokens. Each asset can only be staked in one pool. After staking assets, users

can obtain a variety of reward tokens provided by the corresponding pool. The staking assets are first

deposited into the vault contract. When the vault contract sets a strategy, the assets will be

automatically deposited into the strategy contract. Users can withdraw staked assets and increase or

decrease the staked amount. When increasing or decreasing the amount staked, the rewards for the

previous staking period are settled and sent to the user. A handling fee will be deducted when the

staked assets are retrieved. The handling rate is set by the project party and ranges from 0% to 0.2%.

At the same time, the reward tokens received by users will also be deducted from the corresponding

handling fees according to the set handling rate.


```

Kalax Security Audit

Page 6 of 33

1 Overview

1.1 Project Overview

Project Name Kalax

Project language Solidity

Platform Blast

Code base https://github.com/Kalaxio/KalaxContracts/

Commit
8ee4d77d9667d2fb73f429e53c2961b408d91dbe

9f0fc44a74bce59e8c886b33eab6b65ee84de480

1.2 Audit Overview

Audit work duration: May 13, 2024 – May 21, 2024

Audit team: Beosin Security Team

1.3 Audit Method

The audit methods are as follows:

1. Formal Verification

Formal verification is a technique that uses property-based approaches for testing and verification.

Property specifications define a set of rules using Beosin's library of security expert rules. These rules

call into the contracts under analysis and make various assertions about their behavior. The rules of

the specification play a crucial role in the analysis. If the rule is violated, a concrete test case is

provided to demonstrate the violation.

2. Manual Review

Using manual auditing methods, the code is read line by line to identify potential security issues. This

ensures that the contract's execution logic aligns with the client's specifications and intentions,

thereby safeguarding the accuracy of the contract's business logic.

Themanual audit is divided into three groups to cover the entire auditing process:

The Basic Testing Group is primarily responsible for interpreting the project's code and conducting

comprehensive functional testing.



```

Kalax Security Audit

Page 7 of 33

The Simulated Attack Group is responsible for analyzing the audited project based on the collected

historical audit vulnerability database and security incident attack models. They identify potential

attack vectors and collaborate with the Basic Testing Group to conduct simulated attack tests.

The Expert Analysis Group is responsible for analyzing the overall project design, interactions with third

parties, and security risks in the on-chain operational environment. They also conduct a review of the

entire audit findings.

3. Static Analysis

Static analysis is a method of examining code during compilation or static analysis to detect issues.

Beosin-VaaS can detect more than 100 common smart contract vulnerabilities through static analysis,

such as reentrancy and block parameter dependency. It allows early and efficient discovery of

problems to improve code quality and security.


```

Kalax Security Audit

Page 8 of 33

2 Findings

Index Risk description Severity level Status

Kalax-01 Native token cannot be withdrawn from strategy
contract

Medium Fixed

Kalax-02 The value of totalAllocPoint cannot bemodified
directly

Medium Fixed

Kalax-03 Centralization risk Medium Fixed

Kalax-04 Gas fee problem Low Acknowledged

Kalax-05 WithdrawFee does not set a reasonable range Low Fixed

Kalax-06 Compilation problems Low Partially Fixed

Kalax-07 Pools should be updated Low Acknowledged

Kalax-08 Update the pool first, then set a new TokenPerBlock Low Fixed

Kalax-09 TotalUserRevenue and rewardDebt are not updated Low Fixed

Kalax-10 Function lacks check for depositing tokens and
native tokens at the same time

Info Fixed

Kalax-11 Missing trigger events Info Partially Fixed

Kalax-12 Redundant Code Info Partially Fixed

Kalax-13 Inappropriate data structure storage used Info Acknowledged



```

Kalax Security Audit

Page 9 of 33

Finding Details:

[Kalax-01] Native token cannot be withdrawn from strategy contract

Severity Level Medium

Type Business Security

Lines Vault.sol#178-180

Description depositNative and withdrawNative are two functions in the strategy contract.

When calling the depositNative method of the strategy contract in the vault

contract to transfer native token to the strategy, The parameter of the

depositNative function is incorrectly set to the user address and should be the

Vault contract address. This will cause the strategy contract to record transfers

to the user address instead of the Vault contract address. When the Vault

contract address calls the withdrawNative function to withdraw user assets, it

will fail, resulting in asset losses.

if (address(strategy) != address(0)) {

IStrategy(strategy).depositNative{value:

_amount}(_userAddr);

}

Recommendation It is recommended to modify _userAddr in the code to address(this).

Status Fixed.

if (address(strategy) != address(0)) {

IStrategy(strategy).depositNative{value:

_amount}(address(this));

}


```

Kalax Security Audit

Page 10 of 33

[Kalax-02] The value of totalAllocPoint cannot be modified directly

Severity Level Medium

Type Business Security

Lines KalaxMultiRewardV2Farm.sol#191-193

Description The totalAllocPoint is a state variable whose value is the sum of allocPoint

values in all pools. When the value is modified directly through the

setTotalAllocPoint function, it will cause problemswith reward allocation.

function setTotalAllocPoint(uint256 _totalAllocPoint) public

onlyOwner {

totalAllocPoint = _totalAllocPoint;

}

Recommendation It is recommended to delete setTotalAllocPoint function.

Status Fixed.



```

Bazaa Security Audit

Page 11 of 33

[Kalax-03] Centralization risk

Severity Level Medium

Type Business Security

Description 1. The Token contract mint all tokens to a EOA account during deployment,

there is a certain risk of centralization

2. The Vault contract owner can set the strategy contract. If the strategy

contract is set, the assets in the vault will be transferred to the strategy

contract. The transfer of assets is managed by the vault contract owner, and

there is a certain degree of centralization risk.

3. The KalaxMultiRewardV2Farm contract owner can call setPoolAsset to

modify the asset. This is not allowed and is not necessary.

Recommendation

It is recommended to use a multi-signature wallet to manage tokens and the

administrator rights of the vault contract and to delete the setPoolAsset

function

Status Fixed. The setPoolAsset function has been deleted. In addition, due to the lack

of a standard multi-signature agreement on the Blast chain, the project team

has not adopted a multi-signature solution; however, they have noticed this

problem and promised to keep the private key properly.


```

Kip checker reward Security Audit

Page 12 of 33

[Kalax-04] Gas fee problem

Severity Level Low

Type General Vulnerability

Lines KalaxMultiRewardV2Farm.sol#417-447

Description When removing reward token, rewards need to be distributed separately to

each user. When there are too many users, the gas fee will be too high, and even

the function call will fail.

function removeRewardTokenFromPool(uint256 _pid, IERC20

_rewardToken) public onlyOwner {

require(address(_rewardToken) != address(0), "Invalid

rewardToken");

PoolInfo storage pool = poolInfoList[_pid];

// calculate the removing token rewards and transfer to user

address[] memory userList = poolUserList[_pid].values();

for (uint256 i = 0; i < userList.length; i++) {

address userAddr = userList[i];

uint256 _pendingRemovingRewards = pendingRewardToken(_pid,

userAddr, _rewardToken);

if (_pendingRemovingRewards > 0) {

safeTokenTransfer(_rewardToken, userAddr,

_pendingRemovingRewards);

}

}

// find the reward token and remove it

uint256 rewardLength = pool.rewards.length;

for (uint256 i = 0; i < rewardLength; i++) {

if (pool.rewards[i].token == _rewardToken) {

pool.rewards[i] = pool.rewards[rewardLength - 1];

pool.rewards.pop();

rewardTokenSet.remove(address(_rewardToken));

break;

}

}

// update the pool

updatePool(_pid);

}

Recommendation It is recommended to use another method to remove reward token. Specifically,



```

Kip checker reward Security Audit

Page 13 of 33

set the block reward tokenPerBlock of the specified token to 0. Before setting

tokenPerBlock, the pool needs to be updated. When removing reward token,

rewards do not need to be distributed to users one by one. The next time the

user performs a deposit or withdraw operation, the rewards will be

automatically settled to the user.

Status Acknowledged


```

Kalax Security Audit

Page 14 of 33

[Kalax-05] WithdrawFee does not set a reasonable range

Severity Level Low

Type Business Security

Lines KalaxMultiRewardV2Farm.sol#356-396,454-469

Description The addPool function and setPool function do not check the reasonable range

of the input parameter _withdrawFee. If _withdrawFee is set too large, the user

will receive less funds than expected.

function addPool(

uint256 _allocPoints,

address _token,

bool _withUpdate,

uint256 _withdrawFee,

address _vault,

bool _isEth,

RewardInfo[] memory _rewards

) external onlyOwner {

...

newPool.withdrawFee = _withdrawFee;

...

}

function setPool(

uint256 _pid,

uint256 _allocPoints,

bool _withUpdate,

uint256 _withdrawFee

) external onlyOwner {

...

poolInfoList[_pid].withdrawFee = _withdrawFee;

...

}

Recommendation
It is recommended to set a reasonable range for the withdrawFee field of the

pool.

Status Fixed.

function addPool(

uint256 _allocPoints,

address _token,



```

Kalax Security Audit

Page 15 of 33

bool _withUpdate,

uint256 _withdrawFee,

address _vault,

bool _isEth,

RewardInfo[] memory _rewards

) external onlyOwner {

require(_withdrawFee <= 2, "Invalid withdraw fee");

...

}

function setPool(

uint256 _pid,

uint256 _allocPoints,

bool _withUpdate,

uint256 _withdrawFee

) external onlyOwner {

require(_withdrawFee <= 2, "Invalid withdraw fee");

...

}


```

Kalax Security Audit

Page 16 of 33

[Kalax-06] Compilation problems

Severity Level Low

Type General Vulnerability

Lines ETHHelper.sol#4,Vault.sol#8-10,KalaxMultiRewardV2Farm.sol#9-11,145,330

Description There are several problems in the project that cause the compilation to fail:

1. Missing interface: The IETHHelper interface is imported in the ETHHelper

contract, but the interface is not in the interface path.

2. Import path error: When importing interfaces, the directory name in the path

is incorrectly written as "interfaces" and should be "interface".In addition, when

KalaxMultiRewardV2Farm and Vault contracts import interfaces, there are also

errors in the path './' should be used, but it is incorrectly written as '../'.

3. Data type mismatch: The initialize function attempts to assign a uint type

value to the mapping type, which is not allowed in Solidity because they are

different data types.

4. Wrong and meaningless statement: The 330th line of code in the

KalaxMultiRewardV2Farm contract is incorrect syntax andmeaningless code.

import "../interfaces/IETHHelper.sol";

import "../interfaces/IVault.sol";

import "../comm/ETHHelper.sol";

import "../comm/TransferHelper.sol";

import "../comm/TransferHelper.sol";

import "../interfaces/IVault.sol";

import "../interfaces/IStrategy.sol";

totalUserRevenue = 0;

startBlock = block.number;

Recommendation
It is recommended to add the IETHHelper interface, change Import path and

delete totalUserRevenue and startBlock variable.

Status Partially Fixed. Except for the second point where the directory name error has

not beenmodified, the other three points have been fixed.



```

Kalax Security Audit

Page 17 of 33

[Kalax-07] Pools should be updated

Severity Level Low

Type Business Security

Lines KalaxMultiRewardV2Farm.sol#356-396,454-469

Description When a new pool is added, totalAllocPoin will change, and the proportion of

each pool will also change. Pools need to be updated first. Modifying the pool's

allocPoint also has this problem.

function addPool(

uint256 _allocPoints,

address _token,

bool _withUpdate,

uint256 _withdrawFee,

address _vault,

bool _isEth,

RewardInfo[] memory _rewards

) external onlyOwner {

...

if (_withUpdate) {

updateMassPools();

}

...

}

function setPool(

uint256 _pid,

uint256 _allocPoints,

bool _withUpdate,

uint256 _withdrawFee

) external onlyOwner {

if (_withUpdate) {

updateMassPools();

}

...

}

Recommendation It is recommended to update pools.

Status Acknowledged.


```

Kalax Security Audit

Page 18 of 33

[Kalax-08] Update the pool first, then set a new TokenPerBlock

Severity Level Low

Type General Vulnerability

Lines KalaxMultiRewardV2Farm.sol#154-164

Description Before setting a new TokenPerBlock for the pool, you need to update the pool

first.

function setPoolTokenPerBlock(uint256 _pid, uint256 _rewardIndex,

uint256 _newTokenPerBlock) public onlyOwner {

require(_pid >= 0, "Farm: invalid new pool pid");

PoolInfo storage pool = poolInfoList[_pid];

pool.rewards[_rewardIndex].tokenPerBlock = _newTokenPerBlock;

// update the pool

updateMassPools();

}

Recommendation
It is recommended to update the pool before setting a new TokenPerBlock for

the pool.

Status Fixed.

function setPoolTokenPerBlock(uint256 _pid, uint256 _rewardIndex,

uint256 _newTokenPerBlock) public onlyOwner {

require(_pid >= 0, "Farm: invalid new pool pid");

// update the pool

updateMassPools();

PoolInfo storage pool = poolInfoList[_pid];

pool.rewards[_rewardIndex].tokenPerBlock = _newTokenPerBlock;

emit EventSetPoolTokenPerBlock(_pid, _rewardIndex,

_newTokenPerBlock);

}



```

Kalax Security Audit

Page 19 of 33

[Kalax-09] TotalUserRevenue and rewardDebt are not updated

Severity Level Low

Type General Vulnerability

Lines KalaxMultiRewardV2Farm.sol#417-447

Description When the reward token is removed, totalUserRevenue is not updated, causing

the data of totalUserRevenue to be inaccurate.The user rewardDebt has not

been updated. If the removed token is added again, the reward calculation will

be incorrect.

function removeRewardTokenFromPool(uint256 _pid, IERC20

_rewardToken) public onlyOwner {

require(address(_rewardToken) != address(0), "Invalid

rewardToken");

PoolInfo storage pool = poolInfoList[_pid];

// calculate the removing token rewards and transfer to user

address[] memory userList = poolUserList[_pid].values();

for (uint256 i = 0; i < userList.length; i++) {

address userAddr = userList[i];

uint256 _pendingRemovingRewards = pendingRewardToken(_pid,

userAddr, _rewardToken);

if (_pendingRemovingRewards > 0) {

safeTokenTransfer(_rewardToken, userAddr,

_pendingRemovingRewards);

}

}

// find the reward token and remove it

uint256 rewardLength = pool.rewards.length;

for (uint256 i = 0; i < rewardLength; i++) {

if (pool.rewards[i].token == _rewardToken) {

pool.rewards[i] = pool.rewards[rewardLength - 1];

pool.rewards.pop();

rewardTokenSet.remove(address(_rewardToken));

break;

}

}

// update the pool

updatePool(_pid);

}


```

Kalax Security Audit

Page 20 of 33

Recommendation
It is recommended to update totalUserRevenue and rewardDebt when

removing reward token.

Status Fixed.

user.rewardDebt[_rewardToken] =

user.rewardDebt[_rewardToken] + _pendingRemovingRewards;

totalUserRevenue[_rewardToken] =

totalUserRevenue[_rewardToken] + _pendingRemovingRewards;



```

Kalax Security Audit

Page 21 of 33

[Kalax-10] Function lacks check for depositing tokens and native
tokens at the same time

Severity Level Info

Type Business Security

Lines KalaxMultiRewardV2Farm.sol#616-630

Description When a user deposits tokens, if accidentally transfers native tokens at the

same time, the system will only record the deposited amount of tokens, causing

the user to lose native tokens.

if (address(pool.assets) == weth) {

if (_amount > 0) {

TransferHelper.safeTransferFrom(address(pool.assets),

address(msg.sender), address(this), _amount);

TransferHelper.safeTransfer(weth, address(wethHelper),

_amount);

wethHelper.withdrawETH(weth, address(this), _amount);

}

if (msg.value > 0) {

_amount = _amount + msg.value;

}

} else {

if (_amount > 0) {

TransferHelper.safeTransferFrom(address(pool.assets),

address(msg.sender), address(this), _amount);

}

}

Recommendation
It is recommended to add a check that the native token is 0 when depositing the

token.

Status Fixed.

if (address(pool.assets) == weth) {

if (_amount > 0) {

TransferHelper.safeTransferFrom(address(pool.assets),

address(msg.sender), address(this), _amount);

TransferHelper.safeTransfer(weth, address(wethHelper),

_amount);

wethHelper.withdrawETH(weth, address(this), _amount);

}

if (msg.value > 0) {


```

Kalax Security Audit

Page 22 of 33

_amount = _amount + msg.value;

}

} else {

require(msg.value == 0, "Deposit invalid token");

if (_amount > 0) {

TransferHelper.safeTransferFrom(address(pool.assets),

address(msg.sender), address(this), _amount);

}

}



```

Kalax Security Audit

Page 23 of 33

[Kalax-11] Missing trigger events

Severity Level Info

Type Coding Conventions

Lines KalaxMultiRewardV2Farm.sol#154-187,454-469,700-702,734-742,Vault.sol#81-1
16

Description When the contract owner calls the set function to modify the key variable, many

set functions will not trigger corresponding events, such as the

setPoolTokenPerBlock function and the setFarmPause function.

function setPoolTokenPerBlock(uint256 _pid, uint256 _rewardIndex,

uint256 _newTokenPerBlock) public onlyOwner {

require(_pid >= 0, "Farm: invalid new pool pid");

PoolInfo storage pool = poolInfoList[_pid];

pool.rewards[_rewardIndex].tokenPerBlock = _newTokenPerBlock;

// update the pool

updateMassPools();

}

function setFarmPause(bool _pause) external onlyOwner {

_paused = _pause;

}

Recommendation

It is recommended to emit events when modifying critical variables as it

provides a standardized way to capture and communicate important changes

within the contract. Events enable transparency and allow external systems and

users to easily track and react to thesemodifications.

Status Partially Fixed.

function setPoolTokenPerBlock(uint256 _pid, uint256 _rewardIndex,

uint256 _newTokenPerBlock) public onlyOwner {

require(_pid >= 0, "Farm: invalid new pool pid");

PoolInfo storage pool = poolInfoList[_pid];

pool.rewards[_rewardIndex].tokenPerBlock = _newTokenPerBlock;

// update the pool

updateMassPools();

emit EventSetPoolTokenPerBlock(_pid, _rewardIndex,

_newTokenPerBlock);

}


```

Kalax Security Audit

Page 24 of 33

[Kalax-12] Redundant Code

Severity Level Info

Type Coding Conventions

Lines Token.sol#6,9,KalaxMultiRewardV2Farm.sol#116

Description The imported ERC20Permit contract is not used, the inherited Ownable is not

used, and the userAddrList in the KalaxMultiRewardV2Farm contract is not

used. These are redundant codes.

import

"@openzeppelin/contracts/token/ERC20/extensions/ERC20Permit.sol";

Ownable(_owner){

EnumerableSet.AddressSet private userAddrList;

Recommendation
It is recommended to delete redundant code.

Status Partially Fixed. The import ERC20Permit contract statement has been deleted.



```

Kalax Security Audit

Page 25 of 33

[Kalax-13] Inappropriate data structure storage used

Severity Level Info

Type General Vulnerability

Lines Vault.sol#164

Description If the same user interacts with the Vault contract multiple times, the userList

variable will store the user's addressmultiple times.

userList.push(_userAddr);

Recommendation

It is recommended to store the userList variable as a different data type that

does not store duplicate values.

Status Acknowledged.


```

Kip checker reward Security Audit

Page 26 of 33

3 Appendix

3.1 Vulnerability Assessment Metrics and Status in Smart Contracts

3.1.1 Metrics

In order to objectively assess the severity level of vulnerabilities in blockchain systems, this report

provides detailed assessment metrics for security vulnerabilities in smart contracts with reference to

CVSS 3.1 (Common Vulnerability Scoring System Ver 3.1).

According to the severity level of vulnerability, the vulnerabilities are classified into four levels:

"critical", "high", "medium" and "low". It mainly relies on the degree of impact and likelihood of

exploitation of the vulnerability, supplemented by other comprehensive factors to determine of the

severity level.

Impact

Likelihood
Severe High Medium Low

Probable Critical High Medium Low

Possible High Medium Medium Low

Unlikely Medium Medium Low Info

Rare Low Low Info Info



```

Kip checker reward Security Audit

Page 27 of 33

3.1.2 Degree of impact

 Severe

Severe impact generally refers to the vulnerability can have a serious impact on the confidentiality,

integrity, availability of smart contracts or their economic model, which can cause substantial

economic losses to the contract business system, large-scale data disruption, loss of authority

management, failure of key functions, loss of credibility, or indirectly affect the operation of other

smart contracts associated with it and cause substantial losses, as well as other severe and mostly

irreversible harm.

 High

High impact generally refers to the vulnerability can have a relatively serious impact on the

confidentiality, integrity, availability of the smart contract or its economic model, which can cause a

greater economic loss, local functional unavailability, loss of credibility and other impact to the

contract business system.

 Medium

Medium impact generally refers to the vulnerability can have a relatively minor impact on the

confidentiality, integrity, availability of the smart contract or its economic model, which can cause a

small amount of economic loss to the contract business system, individual business unavailability and

other impact.

 Low

Low impact generally refers to the vulnerability can have a minor impact on the smart contract, which

can pose certain security threat to the contract business system and needs to be improved.

3.1.3 Likelihood of Exploitation

 Probable

Probable likelihood generally means that the cost required to exploit the vulnerability is low, with no

special exploitation threshold, and the vulnerability can be triggered consistently.

 Possible

Possible likelihood generally means that exploiting such vulnerability requires a certain cost, or there

are certain conditions for exploitation, and the vulnerability is not easily and consistently triggered.


```

Kip checker reward Security Audit

Page 28 of 33

 Unlikely

Unlikely likelihood generally means that the vulnerability requires a high cost, or the exploitation

conditions are very demanding and the vulnerability is highly difficult to trigger.

 Rare

Rare likelihood generally means that the vulnerability requires an extremely high cost or the conditions

for exploitation are extremely difficult to achieve.

3.1.4 Fix Results Status

Status Description

Fixed The project party fully fixes a vulnerability.

Partially Fixed The project party did not fully fix the issue, but only mitigated the
issue.

Acknowledged The project party confirms and chooses to ignore the issue.



```

Kip checker reward Security Audit

Page 29 of 33

3.2 Audit Categories

No. Categories Subitems

1 Coding Conventions

Deprecated Items

Redundant Code

require/assert Usage

Default Values

2 General Vulnerability

Insufficient Address Validation

Lack Of Address Normalization

Variable Override

DoS (Denial Of Service)

Function Call Permissions

Call/Delegatecall Security

Tx.origin Usage

Returned Value Security

Mathematical Risk

Overriding Variables

3 Business Security

Business Logics

Business Implementations

Manipulable Token Price

Centralized Asset Control

Arbitrage Attack

Access Control

Beosin classified the security issues of smart contracts into three categories: Coding Conventions,

General Vulnerability, Business Security. Their specific definitions are as follows:

 Coding Conventions

Audit whether smart contracts follow recommended language security coding practices. For example,

smart contracts developed in Rust language should fix the compiler version and do not use deprecated

keywords.

 General Vulnerability


```

Kip checker reward Security Audit

Page 30 of 33

General Vulnerability include some common vulnerabilities that may appear in smart contract projects.

These vulnerabilities are mainly related to the characteristics of the smart contract itself, such as

integer overflow/underflow and denial of service attacks.

 Business Security

Business security is mainly related to some issues related to the business realized by each project, and

has a relatively strong pertinence. For example, whether the lock-up plan in the code match the white

paper, or the flash loan attack caused by the incorrect setting of the price acquisition oracle.



```

Kip checker reward Security Audit

Page 31 of 33

3.3 Disclaimer

The Audit Report issued by Beosin is related to the services agreed in the relevant service agreement.

The Project Party or the Served Party (hereinafter referred to as the "Served Party") can only be used

within the conditions and scope agreed in the service agreement. Other third parties shall not transmit,

disclose, quote, rely on or tamper with the Audit Report issued for any purpose.

The Audit Report issued by Beosin is made solely for the code, and any description, expression or

wording contained therein shall not be interpreted as affirmation or confirmation of the project, nor

shall any warranty or guarantee be given as to the absolute flawlessness of the code analyzed, the code

team, the business model or legal compliance.

The Audit Report issued by Beosin is only based on the code provided by the Served Party and the

technology currently available to Beosin. However, due to the technical limitations of any organization,

and in the event that the code provided by the Served Party is missing information, tampered with,

deleted, hidden or subsequently altered, the audit report may still fail to fully enumerate all the risks.

The Audit Report issued by Beosin in no way provides investment advice on any project, nor should it be

utilized as investment suggestions of any type. This report represents an extensive evaluation process

designed to help our customers improve code quality while mitigating the high risks in blockchain.


```

Kip checker reward Security Audit

Page 32 of 33

3.4 About Beosin

Beosin is the first institution in the world specializing in the construction of blockchain

security ecosystem. The core team members are all professors, postdocs, PhDs, and Internet

elites from world-renowned academic institutions. Beosin has more than 20 years of research

in formal verification technology, trusted computing, mobile security and kernel security, with

overseas experience in studying and collaborating in project research at well-known

universities. Through the security audit and defense deployment of more than 2,000 smart

contracts, over 50 public blockchains and wallets, and nearly 100 exchanges worldwide,

Beosin has accumulated rich experience in security attack and defense of the blockchain field,

and has developed several security products specifically for blockchain.



Official Website
https://www.beosin.com

Telegram
https://t.me/beosin

Twitter
https://twitter.com/Beosin_com

Email
service@beosin.com

https://www.beosin.com
https://t.me/beosin
https://twitter.com/Beosin_com

	1 Overview
	1.1 Project Overview
	1.2 Audit Overview
	1.3 Audit Method

	2 Findings
	[Kalax-01] Native token cannot be withdrawn from s
	[Kalax-02] The value of totalAllocPoint cannot be 
	[Kalax-03] Centralization risk
	[Kalax-04] Gas fee problem
	[Kalax-05] WithdrawFee does not set a reasonable r
	[Kalax-06] Compilation problems
	[Kalax-07] Pools should be updated
	[Kalax-08] Update the pool first, then set a new T
	[Kalax-09] TotalUserRevenue and rewardDebt are not
	[Kalax-10] Function lacks check for depositing tok
	[Kalax-11] Missing trigger events
	[Kalax-12] Redundant Code
	[Kalax-13] Inappropriate data structure storage us

	3 Appendix
	3.1 Vulnerability Assessment Metrics and Status in
	3.2 Audit Categories
	3.3 Disclaimer
	3.4 About Beosin


