
RunesRouter
Smart Contract Security Audit

No. 202405101428

May 10th, 2024

SECURING BLOCKCHAIN ECOSYSTEM

WWW.BEOSIN.COM


```

RunesRouter Security Audit

Page 2 of 23

Contents

1 Overview ........................................................................................................................................................... 5

1.1 Project Overview .................................................................................................................................... 5

1.2 Audit Overview ....................................................................................................................................... 5

1.3 Audit Method .......................................................................................................................................... 5

2 Findings ............................................................................................................................................................ 7

[RunesRouter-01] The chainId is not being validated ............................................................................. 8

[RunesRouter-02] Lack of the limitation of Validators .........................................................................10

[RunesRouter-03] The cross-chain amount calculates error ..............................................................11

[RunesRouter-04] Signature Reuse Risk ............................................................................................... 12

[RunesRouter-05] Missing Event Trigger ...............................................................................................14

3 Appendix ........................................................................................................................................................ 16

3.1 Vulnerability Assessment Metrics and Status in Smart Contracts .................................................16

3.2 Audit Categories ................................................................................................................................. 19

3.3 Disclaimer ............................................................................................................................................ 21

3.4 About Beosin ....................................................................................................................................... 22



```

RunesRouter Security Audit

Page 3 of 23

Summary of Audit Results

After auditing, 2 High-risk, 2 Low-risk and 1 Info items were identified in the RunesRouter project.

Specific audit details will be presented in the Findings section. Users should pay attention to the

following aspects when interacting with this project:

High
Fixed: 2 Acknowledged: 0

Low
Fixed: 2 Acknowledged: 0

Info
Fixed: 1 Acknowledged: 0


```

RunesRouter Security Audit

Page 4 of 23

 Project Description:

Business overview

RunesRouter is a routing contract for cross-chain bridges. It primarily consists of four main

functionalities:The first one is the management of a whitelist for cross-chain tokens. The owner can

call the addToken and removeToken functions to add or remove tokens that are supported by the

cross-chain bridge.The second functionality is the management of validators. The owner can call the

addValidator and removeValidator functions to add or remove validators.The third functionality is

the deposit of tokens that need to be transferred across chains. Users can call the deposit function to

deposit tokens that require cross-chain transfers into the contract.The fourth functionality is the

withdrawal of cross-chain tokens. Users can call the withdraw function and use the off-chain

validator's signature to withdraw funds on the target chain.



```

RunesRouter Security Audit

Page 5 of 23

1 Overview

1.1 Project Overview

Project Name RunesRouter

Project Language Solidity

Platform ZetaChain,Ethereum

Code Base https://github.com/runesbridge/runesbridge-contracts/blob/main/src/RunesRoute
r.sol

commit
eefc2a6a5e80ed8a2e4cdb45f01a89563ec806d7

9ad2047d627deb0dfb5634a99e0533524d0b6749

1.2 Audit Overview

Audit work duration: May 09, 2024 – May 10, 2024

Audit team: Beosin Security Team

1.3 Audit Method

The audit methods are as follows:

1. Formal Verification

Formal verification is a technique that uses property-based approaches for testing and verification.

Property specifications define a set of rules using Beosin's library of security expert rules. These rules

call into the contracts under analysis and make various assertions about their behavior. The rules of

the specification play a crucial role in the analysis. If the rule is violated, a concrete test case is

provided to demonstrate the violation.

2. Manual Review

Using manual auditing methods, the code is read line by line to identify potential security issues. This

ensures that the contract's execution logic aligns with the client's specifications and intentions,

thereby safeguarding the accuracy of the contract's business logic.

Themanual audit is divided into three groups to cover the entire auditing process:

The Basic Testing Group is primarily responsible for interpreting the project's code and conducting

comprehensive functional testing.


```

RunesRouter Security Audit

Page 6 of 23

The Simulated Attack Group is responsible for analyzing the audited project based on the collected

historical audit vulnerability database and security incident attack models. They identify potential

attack vectors and collaborate with the Basic Testing Group to conduct simulated attack tests.

The Expert Analysis Group is responsible for analyzing the overall project design, interactions with third

parties, and security risks in the on-chain operational environment. They also conduct a review of the

entire audit findings.

3. Static Analysis

Static analysis is a method of examining code during compilation or static analysis to detect issues.

Beosin-VaaS can detect more than 100 common smart contract vulnerabilities through static analysis,

such as reentrancy and block parameter dependency. It allows early and efficient discovery of

problems to improve code quality and security.



```

RunesRouter Security Audit

Page 7 of 23

2 Findings

Index Risk description Severity level Status

RunesRouter-01 The chainId is not being validated High Fixed

RunesRouter-02 Lack of the limitation of Validators High Fixed

RunesRouter-03 The cross-chain amount calculates error Low Fixed

RunesRouter-04 Signature Reuse Risk Low Fixed

RunesRouter-05 Missing Event Trigger Info Fixed


```

RunesRouter Security Audit

Page 8 of 23

Finding Details:

[RunesRouter-01] The chainId is not being validated

Severity Level High

Type Business Security

Lines RunesRouter.sol #L102-148

Description Users can call the withdraw function and extract cross-chain funds. However,

the contract does not verify whether the chainID in the signature is consistent

with the actual cross-chain chainID. Therefore, in the case where the token

and validators addresses are the same, an attacker can execute a withdrawal

transaction on Chain A, which can also be executed on Chain B.

function withdraw(

address token,

string memory from,

uint256 amount,

string memory txhash,

uint256 chainId,

bytes[] calldata signatures

) external whenNotPaused nonReentrant notProcessed(txhash) {

require(

signatures.length == _validators.length,

"invalid length of signatures"

);

for (uint i = 0; i < _validators.length; i++) {

require(

_verify(

token,

from,

_msgSender(),

amount,

txhash,

signatures[i],

chainId,

_validators[i]

),

"invalid signature"



```

RunesRouter Security Audit

Page 9 of 23

);

}

txProcessed[txhash] = true;

IERC20(token).transfer(_msgSender(), amount);

emit Withdraw(token, from, _msgSender(), amount, txhash, chainId);

}

Recommendation
It is recommended to check whether the chain ID for the withdraw is the same

as the local chain ID.

Status Fixed.The project teammodified the relevant code to check chain ID.


```

RunesRouter Security Audit

Page 10 of 23

[RunesRouter-02] Lack of the limitation of Validators

Severity Level High

Type Business Security

Lines RunesRouter.sol #L84-100

Description There is no limitation on the number of Validators that can be removed through

the removeValidator function in the contract. If the owner removes all

Validators from the contract, anyone, including the owner, would be able to

withdraw all the tokens from the contract.

function removeValidator(address _address) external onlyOwner {

require(isValidator[_address], "address not exist");

require(indexes[_address] < _validators.length, "index out of

range");

uint256 index = indexes[_address];

uint256 lastIndex = _validators.length - 1;

if (index != lastIndex) {

address lastAddr = _validators[lastIndex];

_validators[index] = lastAddr;

indexes[lastAddr] = index;

}

delete isValidator[_address];

delete indexes[_address];

_validators.pop();

}

Recommendation It is recommended to add the limitation of the Validators when owner remove.

Status Fixed.The project team add a restriction has been added to the

removeValidator function, specifying that validators can only be removed

when their quantity is greater than 1.Furthermore, a validation check has been

implemented in the withdraw function. Withdrawals are only allowed when

validators exist.



```

RunesRouter Security Audit

Page 11 of 23

[RunesRouter-03] The cross-chain amount calculates error

Severity Level Low

Type Business Security

Lines RunesRouter.sol #L102-115

Description In best practices not to use the change in the sender's token balance as

cross-chain funds.If the deposited token is a deflationary token, there may be a

certain amount of fees charged to the user during the transfer. This fee should

not be included in the cross-chain amount. Therefore, if the difference in the

sender's balance is used as the actual cross-chain amount for the user, it would

result in the cross-chain bridge contract losing funds.

function deposit(

address token,

string memory to,

uint256 amount,

uint256 chainId

) external whenNotPaused {

require(acceptedTokens[token], "token not accepted");

uint256 balance = IERC20(token).balanceOf(_msgSender());

IERC20(token).transferFrom(_msgSender(), address(this), amount);

uint256 newBalance = IERC20(token).balanceOf(_msgSender());

amount = balance - newBalance;

emit Deposit(token, _msgSender(), to, amount, chainId);

}

Recommendation
It is recommended to use the difference in token balance of the contract itself

as the actual cross-chain amount for the user.

Status Fixed.The project team replaces the original sender's balance change with the
received token amount at the contract as the cross-chain amount.


```

RunesRouter Security Audit

Page 12 of 23

[RunesRouter-04] Signature Reuse Risk

Severity Level Low

Type Business Security

Lines RunesRouter.sol #L54-63

Description In the initialize function of the contract, the __EIP712_init function of the

EIP712Upgradeable contract is not called to initialize the parameters name

and version. These parameter is designed to include bits of project unique

information such as the name of the project. If these parameters are not

initialized, it may allow other contracts with the same signature structure as

this contract to pass verification. For example, if there are two different

versions of the Router contract with identical signature structures after this

contract is upgraded, the original withdrawal transactions can be successfully

executed in both versions of the Router.

function initialize(

address _validator1,

address _validator2,

address _validator3

) public initializer {

_addValidator(_validator1);

_addValidator(_validator2);

_addValidator(_validator3);

__Ownable_init(_msgSender());

}

Recommendation It is recommended to use __EIP712_init function when initialize.

Status Fixed.

function initialize(

address _validator1,

address _validator2,

address _validator3

) public initializer {

_addValidator(_validator1);

_addValidator(_validator2);

_addValidator(_validator3);

__Ownable_init(_msgSender());

__EIP712_init("RunesRouter", "1");



```

RunesRouter Security Audit

Page 13 of 23

}


```

RunesRouter Security Audit

Page 14 of 23

[RunesRouter-05] Missing Event Trigger

Severity Level Info

Type Coding Conventions

Lines RunesRouter.sol#L108-135

Description The Validator in the contract does not trigger events when key parameters are

modified.

function addToken(address token) external onlyOwner {

acceptedTokens[token] = true;

}

function removeToken(address token) external onlyOwner {

acceptedTokens[token] = false;

}

function addValidator(address _address) public onlyOwner {

_addValidator(_address);

}

function _addValidator(address _address) internal {

require(!isValidator[_address], "already exist");

indexes[_address] = _validators.length;

isValidator[_address] = true;

_validators.push(_address);

}

function removeValidator(address _address) external onlyOwner {

require(isValidator[_address], "address not exist");

require(indexes[_address] < _validators.length, "index out of

range");

uint256 index = indexes[_address];

uint256 lastIndex = _validators.length - 1;



```

RunesRouter Security Audit

Page 15 of 23

if (index != lastIndex) {

address lastAddr = _validators[lastIndex];

_validators[index] = lastAddr;

indexes[lastAddr] = index;

}

delete isValidator[_address];

delete indexes[_address];

_validators.pop();

}

Recommendation

It is recommended to modifying critical variables is a recommended practice as

it provides a standardized way to capture and communicate important changes

within the contract. Events enable transparency and allow external systems and

users to easily track and react to thesemodifications.

Status Fixed.The project team added the corresponding event.


```

RunesRouter Security Audit

Page 16 of 23

3 Appendix

3.1 Vulnerability Assessment Metrics and Status in Smart Contracts

3.1.1 Metrics

In order to objectively assess the severity level of vulnerabilities in blockchain systems, this report

provides detailed assessment metrics for security vulnerabilities in smart contracts with reference to

CVSS 3.1 (Common Vulnerability Scoring System Ver 3.1).

According to the severity level of vulnerability, the vulnerabilities are classified into four levels:

"critical", "high", "medium" and "low". It mainly relies on the degree of impact and likelihood of

exploitation of the vulnerability, supplemented by other comprehensive factors to determine of the

severity level.

Impact

Likelihood
Severe High Medium Low

Probable Critical High Medium Low

Possible High Medium Medium Low

Unlikely Medium Medium Low Info

Rare Low Low Info Info



```

RunesRouter Security Audit

Page 17 of 23

3.1.2 Degree of impact

 Severe

Severe impact generally refers to the vulnerability can have a serious impact on the confidentiality,

integrity, availability of smart contracts or their economic model, which can cause substantial

economic losses to the contract business system, large-scale data disruption, loss of authority

management, failure of key functions, loss of credibility, or indirectly affect the operation of other

smart contracts associated with it and cause substantial losses, as well as other severe and mostly

irreversible harm.

 High

High impact generally refers to the vulnerability can have a relatively serious impact on the

confidentiality, integrity, availability of the smart contract or its economic model, which can cause a

greater economic loss, local functional unavailability, loss of credibility and other impact to the

contract business system.

 Medium

Medium impact generally refers to the vulnerability can have a relatively minor impact on the

confidentiality, integrity, availability of the smart contract or its economic model, which can cause a

small amount of economic loss to the contract business system, individual business unavailability and

other impact.

 Low

Low impact generally refers to the vulnerability can have a minor impact on the smart contract, which

can pose certain security threat to the contract business system and needs to be improved.

3.1.3 Likelihood of Exploitation

 Probable

Probable likelihood generally means that the cost required to exploit the vulnerability is low, with no

special exploitation threshold, and the vulnerability can be triggered consistently.

 Possible

Possible likelihood generally means that exploiting such vulnerability requires a certain cost, or there

are certain conditions for exploitation, and the vulnerability is not easily and consistently triggered.


```

RunesRouter Security Audit

Page 18 of 23

 Unlikely

Unlikely likelihood generally means that the vulnerability requires a high cost, or the exploitation

conditions are very demanding and the vulnerability is highly difficult to trigger.

 Rare

Rare likelihood generally means that the vulnerability requires an extremely high cost or the conditions

for exploitation are extremely difficult to achieve.

3.1.5 Fix Results Status

Status Description

Fixed The project party fully fixes a vulnerability.

Partially Fixed The project party did not fully fix the issue, but only mitigated the
issue.

Acknowledged The project party confirms and chooses to ignore the issue.



```

RunesRouter Security Audit

Page 19 of 23

3.2 Audit Categories

No. Categories Subitems

1 Coding Conventions

Compiler Version Security

Deprecated Items

Redundant Code

require/assert Usage

Gas Consumption

2 General Vulnerability

Integer Overflow/Underflow

Reentrancy

Pseudo-randomNumber Generator (PRNG)

Transaction-Ordering Dependence

DoS (Denial of Service)

Function Call Permissions

call/delegatecall Security

Returned Value Security

tx.origin Usage

Replay Attack

Overriding Variables

Third-party Protocol Interface Consistency

3 Business Security

Business Logics

Business Implementations

Manipulable Token Price

Centralized Asset Control

Asset Tradability

Arbitrage Attack

Beosin classified the security issues of smart contracts into three categories: Coding Conventions,

General Vulnerability, Business Security. Their specific definitions are as follows:

 Coding Conventions


```

RunesRouter Security Audit

Page 20 of 23

Audit whether smart contracts follow recommended language security coding practices. For example,

smart contracts developed in Solidity language should fix the compiler version and do not use

deprecated keywords.

 General Vulnerability

General Vulnerability include some common vulnerabilities that may appear in smart contract projects.

These vulnerabilities are mainly related to the characteristics of the smart contract itself, such as

integer overflow/underflow and denial of service attacks.

 Business Security

Business security is mainly related to some issues related to the business realized by each project, and

has a relatively strong pertinence. For example, whether the lock-up plan in the code match the white

paper, or the flash loan attack caused by the incorrect setting of the price acquisition oracle.

*Note that the project may suffer stake losses due to the integrated third-party protocol. This is not something

Beosin can control. Business security requires the participation of the project party. The project party and users

need to stay vigilant at all times.



```

RunesRouter Security Audit

Page 21 of 23

3.3 Disclaimer

The Audit Report issued by Beosin is related to the services agreed in the relevant service agreement.

The Project Party or the Served Party (hereinafter referred to as the "Served Party") can only be used

within the conditions and scope agreed in the service agreement. Other third parties shall not transmit,

disclose, quote, rely on or tamper with the Audit Report issued for any purpose.

The Audit Report issued by Beosin is made solely for the code, and any description, expression or

wording contained therein shall not be interpreted as affirmation or confirmation of the project, nor

shall any warranty or guarantee be given as to the absolute flawlessness of the code analyzed, the code

team, the business model or legal compliance.

The Audit Report issued by Beosin is only based on the code provided by the Served Party and the

technology currently available to Beosin. However, due to the technical limitations of any organization,

and in the event that the code provided by the Served Party is missing information, tampered with,

deleted, hidden or subsequently altered, the audit report may still fail to fully enumerate all the risks.

The Audit Report issued by Beosin in no way provides investment advice on any project, nor should it be

utilized as investment suggestions of any type. This report represents an extensive evaluation process

designed to help our customers improve code quality while mitigating the high risks in blockchain.


```

RunesRouter Security Audit

Page 22 of 23

3.4 About Beosin

Beosin is the first institution in the world specializing in the construction of blockchain

security ecosystem. The core team members are all professors, postdocs, PhDs, and Internet

elites from world-renowned academic institutions. Beosin has more than 20 years of research

in formal verification technology, trusted computing, mobile security and kernel security, with

overseas experience in studying and collaborating in project research at well-known

universities. Through the security audit and defense deployment of more than 2,000 smart

contracts, over 50 public blockchains and wallets, and nearly 100 exchanges worldwide,

Beosin has accumulated rich experience in security attack and defense of the blockchain field,

and has developed several security products specifically for blockchain.



Official Website
https://www.beosin.com

Telegram
https://t.me/beosin

Twitter
https://twitter.com/Beosin_com

Email
service@beosin.com

https://www.beosin.com
https://t.me/beosin
https://twitter.com/Beosin_com

	1 Overview
	1.1 Project Overview
	1.2 Audit Overview
	1.3 Audit Method

	2 Findings
	[RunesRouter-01] The chainId is not being validate
	[RunesRouter-02] Lack of the limitation of Validat
	[RunesRouter-03] The cross-chain amount calculates
	[RunesRouter-04] Signature Reuse Risk
	[RunesRouter-05] 

	3 Appendix
	3.1 Vulnerability Assessment Metrics and Status in
	3.2 Audit Categories
	3.3 Disclaimer
	3.4 About Beosin


