
StreamNFT
Smart Contract Security Audit

No. 202311171648

Nov 17th, 2023

SECURING BLOCKCHAIN ECOSYSTEM

WWW.BEOSIN.COM


```

StreamNFT Security Audit

Page 2 of 26

Contents

1 Overview ........................................................................................................................................................... 5

1.1 Project Overview .................................................................................................................................... 5

1.2 Audit Overview ....................................................................................................................................... 5

1.3 Audit Method .......................................................................................................................................... 5

2 Findings ............................................................................................................................................................ 7

[StreamNFT-01] Funds were arbitrarily withdrawn .................................................................................8

[StreamNFT-02] Key function missing permission checks ................................................................. 10

[StreamNFT-03] Re-entry risk ................................................................................................................ 12

[StreamNFT-04] Reward sent to address 0 ...........................................................................................14

[StreamNFT-05] Redundant code .......................................................................................................... 17

3 Appendix ........................................................................................................................................................ 18

3.1 Vulnerability Assessment Metrics and Status in Smart Contracts .................................................18

3.2 Audit Categories ................................................................................................................................. 21

3.3 Disclaimer ............................................................................................................................................ 23

3.4 About Beosin ....................................................................................................................................... 24



```

StreamNFT Security Audit

Page 3 of 26

Summary of Audit Results

After auditing, 2 High-risk, 2 Low-risk and 1 Info-risk items were identified in the StreamNFT project.

Specific audit details will be presented in the Findings section. Users should pay attention to the

following aspects when interacting with this project:

High
Fixed: 2 Acknowledged: 0

Low
Fixed: 2 Acknowledged: 0

Info
Fixed: 1 Acknowledged: 0


```

StreamNFT Security Audit

Page 4 of 26

 Project Description:

Business overview

StreamNFT is a utility protocol that encompasses P2P NFT rental and P2P Loans. The project operates

like a proxy, using the main contract Diamond to make delegate calls to other implementation

contracts. Both data and tokens are saved by Diamond.

Provider users can deposit ETH into the contract for lending, and users holding NFT (lender) can stake

NFT into the contract and lend and rent. Lender can obtain the specified amount of ETH from the

contract when borrowing, and the NFT status is updated to LOAN. Before the loan settlement time, the

ETH with interest is paid to the provider through the repayLoan function and the LOAN status is

deleted. If the NFT is both unborrowed and unleased, the status is INIT, the NFT will be returned to the

lender. If the loan settlement time exceeds, the provider can obtain the NFT staked by the lender

through the expireLoan function.

The lender can freely set the type and quantity of rental tokens and the rental end time when renting.

The NFT status is updated to STALE, and the rentee user performs the rental and pays the fee (NFT in

the loan state can also be rented, but the rental end time is required to be less than the loan end time).

Generally speaking, rentee users cannot directly obtain the NFT staked by the lender. Depending on the

status of the domint and the type of NFT, the rentee user may obtain Newly minted ERC7066 tokens

and NFT status updates to RENT. The expireRent function can be used to update the status of the NFT

that has expired at the rental end time to STALE and return the ERC7066 tokens received by the rentee.

Lender users can delete the STALE state through the cancelLendToken function. If the NFT is in the

INIT state, the NFT is returned to the lender.



```

StreamNFT Security Audit

Page 5 of 26

1 Overview

1.1 Project Overview

Project Name StreamNFT

Project language Solidity

Platform Ethereum, Hedera

Github Link
(diamond)

https://github.com/streamnft-tech/EVM/tree/diamond

Commit Hash
6929cf090d63f50e092831b03da85436c2d29c5e

c5d54c458b4dd31683edd8258e5aac8154981025

Github Link
(diamond-hedera) https://github.com/streamnft-tech/EVM/tree/diamond-hedera/contracts/facets

Commit Hash

a8227161c129055c4dda1ce33f78f9112851bd98

9bd33a32163642e47f01856ca2b160a68075ae7a

af57bc72202ec0223b36eb53cf64d729e1e91e41

1.2 Audit Overview

Audit work duration: Nov 13, 2023 – Nov 17, 2023

Audit team: Beosin Security Team

1.3 Audit Method

The audit methods are as follows:

1. Formal Verification

Formal verification is a technique that uses property-based approaches for testing and verification.

Property specifications define a set of rules using Beosin's library of security expert rules. These rules

call into the contracts under analysis and make various assertions about their behavior. The rules of

the specification play a crucial role in the analysis. If the rule is violated, a concrete test case is

provided to demonstrate the violation.

2. Manual Review


```

StreamNFT Security Audit

Page 6 of 26

Using manual auditing methods, the code is read line by line to identify potential security issues. This

ensures that the contract's execution logic aligns with the client's specifications and intentions,

thereby safeguarding the accuracy of the contract's business logic.

Themanual audit is divided into three groups to cover the entire auditing process:

The Basic Testing Group is primarily responsible for interpreting the project's code and conducting

comprehensive functional testing.

The Simulated Attack Group is responsible for analyzing the audited project based on the collected

historical audit vulnerability database and security incident attack models. They identify potential

attack vectors and collaborate with the Basic Testing Group to conduct simulated attack tests.

The Expert Analysis Group is responsible for analyzing the overall project design, interactions with third

parties, and security risks in the on-chain operational environment. They also conduct a review of the

entire audit findings.

3. Static Analysis

Static analysis is a method of examining code during compilation or static analysis to detect issues.

Beosin-VaaS can detect more than 100 common smart contract vulnerabilities through static analysis,

such as reentrancy and block parameter dependency. It allows early and efficient discovery of

problems to improve code quality and security.



```

StreamNFT Security Audit

Page 7 of 26

2 Findings
The code in both branches runs with the same logic, but the code implementation is slightly different

due to platform differences, and the following finding is based on the diamond-hedera branch.

Index Risk description Severity level Status

StreamNFT-01 Funds were arbitrarily withdrawn High Fixed

StreamNFT-02 Key functionmissing permission checks High Fixed

StreamNFT-03 Re-entry risk Low Fixed

StreamNFT-04 Reward sent to address 0 Low Fixed

StreamNFT-05 Redundant code Info Fixed


```

StreamNFT Security Audit

Page 8 of 26

Finding Details:

[StreamNFT-01] Funds were arbitrarily withdrawn

Severity Level High

Type Business Security

Lines StreamNFT.sol #L212-226

Description The shareReward function in the RentUtils contract can arbitrarily extract all

the reward money in the contract.

rewardToken and amount are entered by the caller, and all rewardTokens in the

contract can be extracted by entering a very large amount of amount.

This allows a malicious user to take out all ERC20 tokens and ETH from the

contract via the shareReward function after using the lendToken function.

function shareReward(address tokenAddress, uint256 tokenId,

address rewardToken, uint256 amount) external payable {

uint256 ownerShare =

amount.mul(StreamStorage.getMapping().assetManager[tokenAddress][to

kenId].rentState.ownerShare).div(100);

uint256 renteeShare =

amount.mul(100-StreamStorage.getMapping().assetManager[tokenAddress

][tokenId].rentState.ownerShare).div(100);

StreamLibrary.AssetManager memory _assetManager =

StreamStorage.getMapping().assetManager[tokenAddress][tokenId];

if(rewardToken != address(0)){

// Assuming you have an ERC20 interface for the paymentToken

IERC20(rewardToken).transfer( _assetManager.rentState.re

ntee, renteeShare);

IERC20(rewardToken).transfer( _assetManager.initializer,

ownerShare);

} else {

// Direct ETH transfer

payable(_assetManager.rentState.rentee).transfer(rentee

Share);

payable(_assetManager.initializer).transfer(ownerShare)

;



```

StreamNFT Security Audit

Page 9 of 26

}

}

Recommendation
It is recommended to modify the logic of the shareReward function so that the

user can only select the type of reward, not the quantity.

Status Fixed. The project states that this function is a design error and that the user
should share the reward instead of receiving it from the contract.

function shareReward(address tokenAddress, uint256 tokenId,

address rewardToken, uint256 amount) external payable {

if(StreamStorage.getMapping().assetManager[tokenAddress][to

kenId].state==StreamLibrary.State.INIT){

revert ("Invalid State");

}

uint256 ownerShare =

amount.mul(StreamStorage.getMapping().assetManager[tokenAddress][to

kenId].rentState.ownerShare).div(100);

uint256 renteeShare =

amount.mul(100-StreamStorage.getMapping().assetManager[tokenAddress

][tokenId].rentState.ownerShare).div(100);

StreamLibrary.AssetManager memory _assetManager =

StreamStorage.getMapping().assetManager[tokenAddress][tokenId];

if(rewardToken != address(0)){

// Assuming you have an ERC20 interface for the paymentToken

and token approval

IERC20(rewardToken).transferFrom(msg.sender,_assetManag

er.rentState.rentee, renteeShare);

IERC20(rewardToken).transferFrom(msg.sender,_assetManag

er.initializer, ownerShare);

} else {

// Direct ETH transfer

StreamLibrary.checkErrorInsufficientFunds(amount);

payable(_assetManager.rentState.rentee).transfer(rentee

Share);

payable(_assetManager.initializer).transfer(ownerShare)

;

}

}


```

StreamNFT Security Audit

Page 10 of 26

[StreamNFT-02] Key function missing permission checks

Severity Level High

Type Business Security

Lines Stream.sol #L16-28

LoanUtil.sol #L13-16

Description The setupConfig function in the Stream contract has no permission checks and

can be called by anyone.

And the checkAdmin modifier in Stream and LoanUtil is annotated and can't

play the role of authentication.

function setupConfig(uint256 rentalFee, address streamNFT, address

treasury, address admin, address streamCollection) external{

StreamStorage.StreamConfig storage config =

StreamStorage.getConfig();

config.streamNFT=streamNFT;

config.streamRentalFee= rentalFee;

config.streamTreasury = treasury;

config.admin=admin;

config.streamCollection=streamCollection;

}

modifier checkAdmin(){

// if(msg.sender!=admin) revert

StreamLibrary.RequiredAdmin();

_;

}

Recommendation
It is recommended to use a multi-signature wallet to manage the owner

permission of this contract.

Status Fixed. Added permission checks.

function setupConfig(uint256 rentalFee, address streamNFT, address

treasury, address admin, address streamCollection) external{

require(msg.sender ==

LibDiamond.diamondStorage().contractOwner, "LibDiamond: Must be

contract owner");

StreamStorage.StreamConfig storage config =

StreamStorage.getConfig();

config.streamNFT=streamNFT;



```

StreamNFT Security Audit

Page 11 of 26

config.streamRentalFee= rentalFee;

config.streamTreasury = treasury;

config.admin=admin;

config.streamCollection=streamCollection;

}

modifier checkAdmin(){

if(msg.sender!=StreamStorage.getConfig().admin) revert

StreamLibrary.RequiredAdmin();

_;

}


```

StreamNFT Security Audit

Page 12 of 26

[StreamNFT-03] Re-entry risk

Severity Level Low

Type Business Security

Lines LoanUtil.sol #L93-128

Description The updateOfferCount and updateOfferAmount function in the LoanUtil

contract, the transfer occurs before the state variable is changed, although the

transfer function only has a gas limit of 2300, there is still a low probability of

re-entry risk, according to the code security specification, it is recommended

to modify.

function updateOfferAmount(uint256 poolIndex, uint256 offerIndex,

uint256 updatedOffer) external payable{

StreamLibrary.LoanOffer storage offer =

StreamStorage.getMapping().loanOfferList[poolIndex-1].loanOffers[of

ferIndex-1];

if(offer.bidderPubkey != msg.sender){

revert StreamLibrary.InvalidUser();

}

emit StreamLibrary.UpdateOfferAmount(poolIndex-1,

offerIndex-1, updatedOffer);

if(offer.bidAmount>updatedOffer){

payable(offer.bidderPubkey).transfer(offer.totalBids*(o

ffer.bidAmount-updatedOffer));

} else{

StreamLibrary.checkErrorInsufficientFunds(offer.totalBi

ds*(updatedOffer-offer.bidAmount));

}

offer.bidAmount=updatedOffer;

}

Recommendation

It is recommended to use a temporary variable to store offer.totalBids to

participate in the transfer calculation and modify offer.totalBids before

transfer.

Status Fixed. The temporary variable bidAmount is used and the data is updated
before the transfer.

function updateOfferAmount(uint256 poolIndex, uint256 offerIndex,

uint256 updatedOffer) external payable{

StreamLibrary.LoanOffer storage offer =



```

StreamNFT Security Audit

Page 13 of 26

StreamStorage.getMapping().loanOfferList[poolIndex].loanOffers[offe

rIndex];

if(offer.bidderPubkey != msg.sender){

revert StreamLibrary.InvalidUser();

}

emit StreamLibrary.UpdateOfferAmount(poolIndex, offerIndex,

updatedOffer);

uint256 bidAmount=offer.bidAmount;

offer.bidAmount=updatedOffer;

if(bidAmount>updatedOffer){

payable(offer.bidderPubkey).transfer(offer.totalBids*(b

idAmount-updatedOffer));

} else{

StreamLibrary.checkErrorInsufficientFunds(offer.totalBi

ds*(updatedOffer-bidAmount));

}

}


```

StreamNFT Security Audit

Page 14 of 26

[StreamNFT-04] Reward sent to address 0

Severity Level Low

Type Business Security

Lines RentUtil.sol #L159-180

Description The rentee will be set to 0 in the expireRent function, when the state is STALE.

At this point the shareReward function will send the renteeShare to address 0.

function expireRent(address tokenAddress, uint tokenId) external

{

StreamLibrary.AssetManager memory _assetManager =

StreamStorage.getMapping().assetManager[tokenAddress][tokenId];

if(_assetManager.rentState.rentExpiry>block.timestamp)

revert StreamLibrary.PendingExpiry();

//

require(_assetManager.rentState.rentExpiry<block.timestamp,"R4");

//

StreamLibrary.checkAssetState(_assetManager.state,[StreamLibrary.St

ate.RENT,StreamLibrary.State.RENT_AND_LOAN]);

if(_assetManager.state!=StreamLibrary.State.RENT &&

_assetManager.state!=StreamLibrary.State.RENT_AND_LOAN)

revert StreamLibrary.InvalidAssetState();

// require(_assetManager.state==StreamLibrary.State.RENT ||

_assetManager.state==StreamLibrary.State.RENT_AND_LOAN, "R7");

if(_assetManager.state==StreamLibrary.State.RENT){ _assetMan

ager.state=StreamLibrary.State.STALE; }

else{_assetManager.state=StreamLibrary.State.STALE_AND_LOAN

;}

emit StreamLibrary.ExpireRent(tokenAddress, tokenId,

_assetManager.rentState.rentee);

address _rentee = _assetManager.rentState.rentee;

_assetManager.rentState.rentee=address(0);

//update storage

StreamStorage.getMapping().assetManager[tokenAddress][token

Id] = _assetManager;

// transfer wrapped token if minted

if(_assetManager.rentState.doMint){



```

StreamNFT Security Audit

Page 15 of 26

StreamLibrary.transferToken(_rentee,address(this),token

Address,tokenId,true,false);

}

}

Recommendation It is recommended to reset rentee to NFT owner in expireRent.

Status Fixed.

function expireRent(address tokenAddress, uint tokenId) external

{

StreamLibrary.AssetManager memory _assetManager =

StreamStorage.getMapping().assetManager[tokenAddress][tokenId];

if(_assetManager.rentState.rentExpiry>block.timestamp)

revert ("Expiry pending");

//

require(_assetManager.rentState.rentExpiry<block.timestamp,"R4");

//

StreamLibrary.checkAssetState(_assetManager.state,[StreamLibrary.St

ate.RENT,StreamLibrary.State.RENT_AND_LOAN]);

if(_assetManager.state!=StreamLibrary.State.RENT &&

_assetManager.state!=StreamLibrary.State.RENT_AND_LOAN)

revert ("Invalid Asset State");

// require(_assetManager.state==StreamLibrary.State.RENT ||

_assetManager.state==StreamLibrary.State.RENT_AND_LOAN, "R7");

if(_assetManager.state==StreamLibrary.State.RENT){ _assetMan

ager.state=StreamLibrary.State.STALE; }

else{_assetManager.state=StreamLibrary.State.STALE_AND_LOAN

;}

emit StreamLibrary.ExpireRent(tokenAddress, tokenId,

_assetManager.rentState.rentee);

address _rentee = _assetManager.rentState.rentee;

_assetManager.rentState.rentee=_assetManager.initializer;

//update storage

StreamStorage.getMapping().assetManager[tokenAddress][token

Id] = _assetManager;

// transfer wrapped token if minted

if(_assetManager.rentState.doMint){

StreamLibrary.transferToken(_rentee,address(this),token


```

StreamNFT Security Audit

Page 16 of 26

Address,tokenId,true,false);

}

}



```

StreamNFT Security Audit

Page 17 of 26

[StreamNFT-05] Redundant code

Severity Level Info

Type Coding Conventions

Lines Stream.sol #L7-8

Description The StreamLibrary library is referenced twice in Steam.sol.

import "../libraries/StreamLibrary.sol";

import "../libraries/StreamLibrary.sol";

isFixed and fixedMinutes are not used elsewhere and are redundant.

_assetManager.rentState.isFixed=isFixed;

Recommendation It is recommended that this be deleted.

Status Fixed. Removed redundant libraries, added isFixed related check in
processRent.

function processRent(address tokenAddress, uint256 tokenId,

uint256 durationMinutes,bytes32[] calldata proof) external payable

nonReentrant{

StreamLibrary.AssetManager memory _assetManager =

StreamStorage.getMapping().assetManager[tokenAddress][tokenId];

uint rent= _assetManager.rentState.rate*durationMinutes;

uint protocolFee=

rent*StreamStorage.getConfig().streamRentalFee/100;

if(_assetManager.rentState.validityExpiry<block.timestamp+d

urationMinutes*60)

revert ("Exceeded validity");

if(_assetManager.rentState.isFixed &&

_assetManager.rentState.fixedMinutes!=durationMinutes)

revert StreamLibrary.InvalidTimeDuration();


```

StreamNFT Security Audit

Page 18 of 26

3 Appendix

3.1 Vulnerability Assessment Metrics and Status in Smart Contracts

3.1.1 Metrics

In order to objectively assess the severity level of vulnerabilities in blockchain systems, this report

provides detailed assessment metrics for security vulnerabilities in smart contracts with reference to

CVSS 3.1 (Common Vulnerability Scoring System Ver 3.1).

According to the severity level of vulnerability, the vulnerabilities are classified into four levels:

"critical", "high", "medium" and "low". It mainly relies on the degree of impact and likelihood of

exploitation of the vulnerability, supplemented by other comprehensive factors to determine of the

severity level.

Impact

Likelihood
Severe High Medium Low

Probable Critical High Medium Low

Possible High Medium Medium Low

Unlikely Medium Medium Low Info

Rare Low Low Info Info



```

StreamNFT Security Audit

Page 19 of 26

3.1.2 Degree of impact

 Severe

Severe impact generally refers to the vulnerability can have a serious impact on the confidentiality,

integrity, availability of smart contracts or their economic model, which can cause substantial

economic losses to the contract business system, large-scale data disruption, loss of authority

management, failure of key functions, loss of credibility, or indirectly affect the operation of other

smart contracts associated with it and cause substantial losses, as well as other severe and mostly

irreversible harm.

 High

High impact generally refers to the vulnerability can have a relatively serious impact on the

confidentiality, integrity, availability of the smart contract or its economic model, which can cause a

greater economic loss, local functional unavailability, loss of credibility and other impact to the

contract business system.

 Medium

Medium impact generally refers to the vulnerability can have a relatively minor impact on the

confidentiality, integrity, availability of the smart contract or its economic model, which can cause a

small amount of economic loss to the contract business system, individual business unavailability and

other impact.

 Low

Low impact generally refers to the vulnerability can have a minor impact on the smart contract, which

can pose certain security threat to the contract business system and needs to be improved.

3.1.4 Likelihood of Exploitation

 Probable

Probable likelihood generally means that the cost required to exploit the vulnerability is low, with no

special exploitation threshold, and the vulnerability can be triggered consistently.

 Possible

Possible likelihood generally means that exploiting such vulnerability requires a certain cost, or there

are certain conditions for exploitation, and the vulnerability is not easily and consistently triggered.


```

StreamNFT Security Audit

Page 20 of 26

 Unlikely

Unlikely likelihood generally means that the vulnerability requires a high cost, or the exploitation

conditions are very demanding and the vulnerability is highly difficult to trigger.

 Rare

Rare likelihood generally means that the vulnerability requires an extremely high cost or the conditions

for exploitation are extremely difficult to achieve.

3.1.5 Fix Results Status

Status Description

Fixed The project party fully fixes a vulnerability.

Partially Fixed The project party did not fully fix the issue, but only mitigated the
issue.

Acknowledged The project party confirms and chooses to ignore the issue.



```

StreamNFT Security Audit

Page 21 of 26

3.2 Audit Categories

No. Categories Subitems

1 Coding Conventions

Compiler Version Security

Deprecated Items

Redundant Code

require/assert Usage

Gas Consumption

2 General Vulnerability

Integer Overflow/Underflow

Reentrancy

Pseudo-randomNumber Generator (PRNG)

Transaction-Ordering Dependence

DoS (Denial of Service)

Function Call Permissions

call/delegatecall Security

Returned Value Security

s.ContractRef.MsgSender Usage

Replay Attack

Overriding Variables

Third-party Protocol Interface Consistency

3 Business Security

Business Logics

Business Implementations

Manipulable Token Price

Centralized Asset Control

Asset Tradability

Arbitrage Attack

Beosin classified the security issues of smart contracts into three categories: Coding Conventions,

General Vulnerability, Business Security. Their specific definitions are as follows:

 Coding Conventions


```

StreamNFT Security Audit

Page 22 of 26

Audit whether smart contracts follow recommended language security coding practices. For example,

smart contracts developed in Solidity language should fix the compiler version and do not use

deprecated keywords.

 General Vulnerability

General Vulnerability include some common vulnerabilities that may appear in smart contract projects.

These vulnerabilities are mainly related to the characteristics of the smart contract itself, such as

integer overflow/underflow and denial of service attacks.

 Business Security

Business security is mainly related to some issues related to the business realized by each project, and

has a relatively strong pertinence. For example, whether the lock-up plan in the code match the white

paper, or the flash loan attack caused by the incorrect setting of the price acquisition oracle.

*Note that the project may suffer stake losses due to the integrated third-party protocol. This is not something

Beosin can control. Business security requires the participation of the project party. The project party and users

need to stay vigilant at all times.



```

StreamNFT Security Audit

Page 23 of 26

3.3 Disclaimer

The Audit Report issued by Beosin is related to the services agreed in the relevant service agreement.

The Project Party or the Served Party (hereinafter referred to as the "Served Party") can only be used

within the conditions and scope agreed in the service agreement. Other third parties shall not transmit,

disclose, quote, rely on or tamper with the Audit Report issued for any purpose.

The Audit Report issued by Beosin is made solely for the code, and any description, expression or

wording contained therein shall not be interpreted as affirmation or confirmation of the project, nor

shall any warranty or guarantee be given as to the absolute flawlessness of the code analyzed, the code

team, the business model or legal compliance.

The Audit Report issued by Beosin is only based on the code provided by the Served Party and the

technology currently available to Beosin. However, due to the technical limitations of any organization,

and in the event that the code provided by the Served Party is missing information, tampered with,

deleted, hidden or subsequently altered, the audit report may still fail to fully enumerate all the risks.

The Audit Report issued by Beosin in no way provides investment advice on any project, nor should it be

utilized as investment suggestions of any type. This report represents an extensive evaluation process

designed to help our customers improve code quality while mitigating the high risks in blockchain.


```

StreamNFT Security Audit

Page 24 of 26

3.4 About Beosin

Beosin is the first institution in the world specializing in the construction of blockchain

security ecosystem. The core team members are all professors, postdocs, PhDs, and Internet

elites from world-renowned academic institutions. Beosin has more than 20 years of research

in formal verification technology, trusted computing, mobile security and kernel security, with

overseas experience in studying and collaborating in project research at well-known

universities. Through the security audit and defense deployment of more than 2,000 smart

contracts, over 50 public blockchains and wallets, and nearly 100 exchanges worldwide,

Beosin has accumulated rich experience in security attack and defense of the blockchain field,

and has developed several security products specifically for blockchain.



Official Website
https://www.beosin.com

Telegram
https://t.me/beosin

Twitter
https://twitter.com/Beosin_com

Email
service@beosin.com

https://www.beosin.com
https://t.me/beosin
https://twitter.com/Beosin_com


```

StreamNFT Security Audit

Page 26 of 26

	1 Overview
	1.1 Project Overview
	1.2 Audit Overview
	1.3 Audit Method

	2 Findings
	[StreamNFT-01] Funds were arbitrarily withdrawn
	[StreamNFT-02] Key function missing permission che
	[StreamNFT-03] Re-entry risk
	[StreamNFT-04] Reward sent to address 0
	[StreamNFT-05] Redundant code

	3 Appendix
	3.1 Vulnerability Assessment Metrics and Status in
	3.2 Audit Categories
	3.3 Disclaimer
	3.4 About Beosin

