
Surf protocol
Smart Contract Security Audit

No. 202311080924

Nov 08th, 2023

SECURING BLOCKCHAIN ECOSYSTEM

WWW.BEOSIN.COM


```

Surf protocol Security Audit

Page 2 of 23

Contents

1 Overview ........................................................................................................................................................... 5

1.1 Project Overview .................................................................................................................................... 5

1.2 Audit Overview ....................................................................................................................................... 5

1.3 Audit Method .......................................................................................................................................... 5

2 Findings ............................................................................................................................................................ 7

[Surf protocol-01] Centralization Risk ...................................................................................................... 8

[Surf protocol-02] Gas Blocking Risk ....................................................................................................... 9

[Surf protocol-03] Unreasonable Slippage Setting ...............................................................................11

[Surf protocol-04] Fees Lack Approval ..................................................................................................12

[Surf protocol-05] Incorrect Parameter Usage .....................................................................................13

[Surf protocol-06] Redundant Code ....................................................................................................... 15

3 Appendix ........................................................................................................................................................ 16

3.1 Vulnerability Assessment Metrics and Status in Smart Contracts .................................................16

3.2 Audit Categories ................................................................................................................................. 19

3.3 Disclaimer ............................................................................................................................................ 21

3.4 About Beosin ....................................................................................................................................... 22



```

Surf protocol Security Audit

Page 3 of 23

Summary of Audit Results

After auditing,2 Medium, 2 Low-risk and 2 Info items were identified in the Surf protocol project.

Specific audit details will be presented in the Findings section. Users should pay attention to the

following aspects when interacting with this project:

Medium
Fixed : 1 Acknowledged: 1

Low
Fixed: 2

Info
Fixed: 2

 Risk Description:

(1) The default maximum leverage for the perpetual contract is set at 50x. The Owner has the authority

to update themaximum leverage. Excessive leveragemay lead to issues such as delayed liquidations.

(2) There is relatively limited precision expansion within the contract. When the Owner configures the

base parameters, it is essential to consider precision issues to prevent potential losses due to

precision loss.


```

Surf protocol Security Audit

Page 4 of 23

 Project Description:

Business overview

Surf protocol project is a perpetual contract project derived from a collateral pool and consists of three

main components: the Collateral Pool Contract, Perpetual Contract, and Order Contract.

In the Collateral Pool Contract, users can create collateral pools with different fee rates and provide

liquidity to these pools. After collateral is provided, users of the Perpetual Contract can open positions

within these collateralized pools, and the losses incurred by Perpetual Contract users become the

source of profit for the collateral pool participants. When users increase or decrease their positions, a

portion of the trading feeswill also be allocated as rewards to the top contributors and initiators.

Within the Perpetual Contract, users can open and close positions in different collateral pools.

Currently, the default maximum leverage is set at 50x, and the total position size for opening cannot

exceed the total liquidity within the collateral pool. All actions related to opening and closing positions

need to be conducted through the higher-level Order Contract.

The Order Contract manages the logic for opening and closing positions, take profit, stop loss, and

liquidation. When performing these actions, users and keepers need to initiate the corresponding

request events to proceed with real-time weighted price retrieval through an oracle. When handling

market orders, if the user creates a market order and the retrieved price doesn't slip beyond the

specified threshold, the contract automatically executes the corresponding opening or closing

operation. For limit orders, users must create the order, and a keeper is required to assess and confirm

the order. After keeper approval, users can proceed with subsequent actions like opening or closing

positions, but they are required to pay a fee to the keeper for their services.



```

Surf protocol Security Audit

Page 5 of 23

1 Overview

1.1 Project Overview

Project Name Surf protocol

Project language Solidity

Platform Base chain

GitHub https://github.com/surf-exchange/v1-core

Commit

ef6dad964ab746533ab1cb86ec299497d35eef16

56a075f90d2b92f0f974cfef5b411230cbd0995d

93b36785b8a30b9305062ba9d1ba7b3ff9707e51

6ef9938281365b83cad248d340a87fc115248af1

8d5de477dd233e30b83be13393fd49dadd1e714a

1.2 Audit Overview

Audit work duration: Oct 8, 2023 – Nov 8, 2023

Audit team: Beosin Security Team

1.3 Audit Method

The audit methods are as follows:

1. Formal Verification

Formal verification is a technique that uses property-based approaches for testing and verification.

Property specifications define a set of rules using Beosin's library of security expert rules. These rules

call into the contracts under analysis and make various assertions about their behavior. The rules of

the specification play a crucial role in the analysis. If the rule is violated, a concrete test case is

provided to demonstrate the violation.

2. Manual Review

Using manual auditing methods, the code is read line by line to identify potential security issues. This

ensures that the contract's execution logic aligns with the client's specifications and intentions,

thereby safeguarding the accuracy of the contract's business logic.

Themanual audit is divided into three groups to cover the entire auditing process:


```

Surf protocol Security Audit

Page 6 of 23

The Basic Testing Group is primarily responsible for interpreting the project's code and conducting

comprehensive functional testing.

The Simulated Attack Group is responsible for analyzing the audited project based on the collected

historical audit vulnerability database and security incident attack models. They identify potential

attack vectors and collaborate with the Basic Testing Group to conduct simulated attack tests.

The Expert Analysis Group is responsible for analyzing the overall project design, interactions with third

parties, and security risks in the on-chain operational environment. They also conduct a review of the

entire audit findings.

3. Static Analysis

Static analysis is a method of examining code during compilation or static analysis to detect issues.

Beosin-VaaS can detect more than 100 common smart contract vulnerabilities through static analysis,

such as reentrancy and block parameter dependency. It allows early and efficient discovery of

problems to improve code quality and security.



```

Surf protocol Security Audit

Page 7 of 23

2 Findings

Index Risk description Severity level Status

Surf protocol-01 Centralization Risk Medium Acknowledged

Surf protocol-02 Gas Blocking Risk Medium Fixed

Surf protocol-03 Unreasonable Slippage Setting Low Fixed

Surf protocol-04 Fees Lack Approval Low Fixed

Surf protocol-05 Incorrect Parameter Usage Info Fixed

Surf protocol-06 Redundant Code Info Fixed


```

Surf protocol Security Audit

Page 8 of 23

Finding Details:

[Surf protocol-01] Centralization Risk

Severity Level Medium

Type Business Security

Lines OrderBook.sol #L335-380

OrderBookBase.sol #L337-381

Description In the OrderBook contract, the executeOrder function for handling limit orders

allows manual input of order information by the keeper address. This order can

bemaliciously forged under the control of a malicious keeper, and such a forged

order may lead to users purchasing positions at non-ideal prices.

executeOrder:

function executeOrder(

ExecuteOrder calldata _order

) external nonReentrant notContract whenNotPaused {

address keeper = msg.sender;

require(config.isKeeperApproved(msg.sender),

"NOT_APPROVED_KEEPER");

IOrderBookBase(config.orderBookBase()).verifyExecuteOrder(

config,

_order,

keeper

);

_canExecute:

if (o.order.isLong) {

return o.order.triggerPrice >= _order.price;

} else {

return o.order.triggerPrice <= _order.price;

}

Recommendation
It is recommended to manage keeper addresses using multi-signature wallets

or similar methods.

Status Acknowledged.



```

Surf protocol Security Audit

Page 9 of 23

[Surf protocol-02] Gas Blocking Risk

Severity Level Medium

Type Business Security

Lines Award.sol #L674-677

Description In the Award contract, the _findTopContributor function, when dealing with

invalid contributors, directly removes the corresponding data from the

contributors array without adjusting the array's length. This can result in the

contributors array length remaining the same, even after performing a delete

operation. Additionally, new contributors are added to the end of the array,

causing the array to grow longer over time. This can lead to increased gas

consumption when querying the array. Furthermore, since the

_findTopContributor function is called by the upper-level function

recordContributor during liquidity addition and removal, there is a risk of gas

blocking. Malicious attackers might exploit this to repeatedly add invalid

contributors to a pool, potentially leading to a DOS attack.

function _findTopContributor(

address _pool,

uint _minimum

) private returns (address, uint) {

address[] storage contributors = poolAllContributors[_pool];

address topContributor = address(0);

uint topContribution = 0;

for (uint i = 0; i < contributors.length; i++) {

address contributor = contributors[i];

uint contribution = IERC20(_pool).balanceOf(contributor);

if (_calcTvl(contribution, _pool, contributor) < _minimum)

{

delete contributors[i];

continue;

}

if (contribution > topContribution) {

topContributor = contributor;

topContribution = contribution;

}

}

return (topContributor, topContribution);}


```

Surf protocol Security Audit

Page 10 of 23

Recommendation
It is recommended to use the approach inside the _removeContributor function

to pop invalid contributors from the array.

Status Fixed. The project team has made modifications to the _findTopContributor

function and included the _removeContributor function in the logic.

_findTopContributor:

if (_calcTvl(contribution, _pool, contributor) < _minimum)

{

_scanContributor(_pool, contributor, _minimum);

continue;

}

_scanContributor:

uint contribution = IERC20(_pool).balanceOf(last);

if (_calcTvl(contribution, _pool, last) >= _minimum) {

_removeContributor(_pool, _trader);

} else {

_removeContributor(_pool, last);

}

_removeContributor:

if (last != _trader) {

uint index = contributorsIndex[_pool][_trader];

contributorsIndex[_pool][last] = index;

poolAllContributors[_pool][index] = last;

}

poolAllContributors[_pool].pop();

delete contributorsIndex[_pool][_trader];

}



```

Surf protocol Security Audit

Page 11 of 23

[Surf protocol-03] Unreasonable Slippage Setting

Severity Level Low

Type Business Security

Lines Callbacks.sol #L242-247

Description In the Callbacks contract, the _openTradeMarketCallback function, when

handling slippage for market orders, only considers slippage during position

addition and does not take into account slippage evaluation for position

reduction. This results in a reversed slippage logic. For instance, when a user

attempts to reduce a long position, the oracle-obtained answer price needs to

be greater than wantedPrice plus the slippage price in the current slippage

logic to execute the reduction. This contradicts the actual slippage logic.

bool shouldCancel = _a.price == 0 ||

(

o.order.isLong

? price > o.order.wantedPrice + maxSlippage

: price < o.order.wantedPrice - maxSlippage

);

Recommendation It is recommended to separately evaluate slippage for position reduction.

Status Fixed. The project team hasmodified the corresponding slippage logic.

if (!shouldCancel) {

if (o.order.isLong) {

if (o.order.buy) {

shouldCancel = price > o.order.wantedPrice + maxSlippage;

} else {

shouldCancel = price < o.order.wantedPrice - maxSlippage;

}

} else {

if (o.order.buy) {

shouldCancel = price < o.order.wantedPrice - maxSlippage;

} else {

shouldCancel = price > o.order.wantedPrice + maxSlippage;

}}}


```

Surf protocol Security Audit

Page 12 of 23

[Surf protocol-04] Fees Lack Approval

Severity Level Low

Type Business Security

Lines PoolRouter.sol #L648

Description In the PoolRouter contract, the _executeLiquidity function, when liqFee is

present, sends the removeFee from the sender's address to the vault. However,

according to the higher-level logic, it has been observed that the contract does

not check the approval value of the sender for the PoolRouter contract. If users

do not approve in a timely manner, this may lead to the Oracle callback not

executing correctly, resulting in callback failures.

if (liqFee > 0) {

uint256 removeFee =

what.mul(liqFee).div(BASIS_POINTS_DIVISOR);

IERC20(baseToken).transferFrom(sender, vault, removeFee);

IVault(vault).distributeFeeRewardWithoutId(

removeFee,

baseToken,

IVault.RewardType.RemoveFee

);

}

Recommendation
It is recommended to handle this portion of the fees in the BurnFrom rewards,
instead of additional approve transfers.

Status Fixed. The project team covered this fee as part of the BurnFrom reward.

(address to, uint256 withdrawFee) = IPoolRouter(

_getPairConfig().poolRouter()

).beforeBurnfrom(what);

require(

IERC20Minimal(baseToken).transfer(_account, what -

withdrawFee),

"burnFrom: Token transfer failed"

);

require(

IERC20Minimal(baseToken).transfer(to, withdrawFee),

"burnFrom: Token transfer failed"

);



```

Surf protocol Security Audit

Page 13 of 23

[Surf protocol-05] Incorrect Parameter Usage

Severity Level Info

Type Business Security

Lines PoolRouter.sol #L840-847

Description In the PoolRouter contract, the _lpUnpnl function incorrectly passes

parameters when using the getUnrealizedPNL function to calculate long and

short profits. In the getUnrealizedPNL function, when the isLong parameter is

true, it returns data for long positions, and when it's false, it returns data for

short positions. However, in the _lpUnpnl function, the parameters were

passed incorrectly, with the long parameter being passed as false and the short

parameter being passed as true.

function _lpUnpnl(

address _pool,

uint256 _price

) internal view returns (uint256 _unpnl, bool _isProfit) {

(uint256 longAmount, bool longProfit) =

IPair(_pool).getUnrealizedPNL(

_price,

false

);

(uint256 shortAmount, bool shortProfit) =

IPair(_pool).getUnrealizedPNL(

_price,

true

);

Recommendation It is recommended to correct this parameter passing to the correct values.

Status Fixed. The project team has corrected the flawed parameter logic.

function _lpUnpnl(

address _pool,

uint256 _price

) internal view returns (uint256 _unpnl, bool _isProfit) {

(uint256 longAmount, bool longProfit) =

IPoolUtil(config.poolUtil())

.calcUnPNL(

_price,


```

Surf protocol Security Audit

Page 14 of 23

IPair(_pool).longPrice(),

IPair(_pool).longAmount(),

true

);

(uint256 shortAmount, bool shortProfit) =

IPoolUtil(config.poolUtil())

.calcUnPNL(

_price,

IPair(_pool).shortPrice(),

IPair(_pool).shortAmount(),

false

);



```

Surf protocol Security Audit

Page 15 of 23

[Surf protocol-06] Redundant Code

Severity Level Info

Type Coding Conventions

Lines PoolRouter.sol #L608

Description In the PoolRouter contract, the _addLiquidity function authorizes the

basetoken of the PoolRouter contract to the pool. However, based on the logic

review, this authorization is redundant and not used subsequently.

function _addLiquidity(uint _reqId, uint256 _price) private {

LiqRequest storage req = requests[_reqId];

IERC20(IPair(req.pool).baseToken()).approve(req.pool,

req.amount);

(bool success, uint256 price, uint256 what) =

IPair(req.pool).mint(

req.sender,

req.amount,

_price

);

require(success, "PoolRouter:mint pool fail");

emit AddLiquidityEvent(req.sender, what, price, req.pool,

_reqId);

}

Recommendation It is recommended to remove the corresponding redundant code.

Status Fixed. The project team has removed the corresponding redundant code.

function _addLiquidity(uint _reqId, uint256 _price) private {

LiqRequest storage req = requests[_reqId];

(bool success, uint256 what) = IPair(req.pool).mint(

req.sender,

req.amount,

_price

);

require(success, "PoolRouter: mint pool fail");

emit AddLiquidityEvent(req.sender, what, _price, req.pool,

_reqId);

}


```

Surf protocol Security Audit

Page 16 of 23

3 Appendix

3.1 Vulnerability Assessment Metrics and Status in Smart Contracts

3.1.1 Metrics

In order to objectively assess the severity level of vulnerabilities in blockchain systems, this report

provides detailed assessment metrics for security vulnerabilities in smart contracts with reference to

CVSS 3.1 (Common Vulnerability Scoring System Ver 3.1).

According to the severity level of vulnerability, the vulnerabilities are classified into four levels:

"critical", "high", "medium" and "low". It mainly relies on the degree of impact and likelihood of

exploitation of the vulnerability, supplemented by other comprehensive factors to determine of the

severity level.

Impact

Likelihood
Severe High Medium Low

Probable Critical High Medium Low

Possible High Medium Medium Low

Unlikely Medium Medium Low Info

Rare Low Low Info Info



```

Surf protocol Security Audit

Page 17 of 23

3.1.2 Degree of impact

 Severe

Severe impact generally refers to the vulnerability can have a serious impact on the confidentiality,

integrity, availability of smart contracts or their economic model, which can cause substantial

economic losses to the contract business system, large-scale data disruption, loss of authority

management, failure of key functions, loss of credibility, or indirectly affect the operation of other

smart contracts associated with it and cause substantial losses, as well as other severe and mostly

irreversible harm.

 High

High impact generally refers to the vulnerability can have a relatively serious impact on the

confidentiality, integrity, availability of the smart contract or its economic model, which can cause a

greater economic loss, local functional unavailability, loss of credibility and other impact to the

contract business system.

 Medium

Medium impact generally refers to the vulnerability can have a relatively minor impact on the

confidentiality, integrity, availability of the smart contract or its economic model, which can cause a

small amount of economic loss to the contract business system, individual business unavailability and

other impact.

 Low

Low impact generally refers to the vulnerability can have a minor impact on the smart contract, which

can pose certain security threat to the contract business system and needs to be improved.

3.1.4 Likelihood of Exploitation

 Probable

Probable likelihood generally means that the cost required to exploit the vulnerability is low, with no

special exploitation threshold, and the vulnerability can be triggered consistently.

 Possible

Possible likelihood generally means that exploiting such vulnerability requires a certain cost, or there

are certain conditions for exploitation, and the vulnerability is not easily and consistently triggered.


```

Surf protocol Security Audit

Page 18 of 23

 Unlikely

Unlikely likelihood generally means that the vulnerability requires a high cost, or the exploitation

conditions are very demanding and the vulnerability is highly difficult to trigger.

 Rare

Rare likelihood generally means that the vulnerability requires an extremely high cost or the conditions

for exploitation are extremely difficult to achieve.

3.1.5 Fix Results Status

Status Description

Fixed The project party fully fixes a vulnerability.

Partially Fixed The project party did not fully fix the issue, but only mitigated the
issue.

Acknowledged The project party confirms and chooses to ignore the issue.



```

Surf protocol Security Audit

Page 19 of 23

3.2 Audit Categories

No. Categories Subitems

1 Coding Conventions

Compiler Version Security

Deprecated Items

Redundant Code

require/assert Usage

Gas Consumption

2 General Vulnerability

Integer Overflow/Underflow

Reentrancy

Pseudo-randomNumber Generator (PRNG)

Transaction-Ordering Dependence

DoS (Denial of Service)

Function Call Permissions

call/delegatecall Security

Returned Value Security

s.ContractRef.MsgSender Usage

Replay Attack

Overriding Variables

Third-party Protocol Interface Consistency

3 Business Security

Business Logics

Business Implementations

Manipulable Token Price

Centralized Asset Control

Asset Tradability

Arbitrage Attack

Beosin classified the security issues of smart contracts into three categories: Coding Conventions,

General Vulnerability, Business Security. Their specific definitions are as follows:

 Coding Conventions


```

Surf protocol Security Audit

Page 20 of 23

Audit whether smart contracts follow recommended language security coding practices. For example,

smart contracts developed in Solidity language should fix the compiler version and do not use

deprecated keywords.

 General Vulnerability

General Vulnerability include some common vulnerabilities that may appear in smart contract projects.

These vulnerabilities are mainly related to the characteristics of the smart contract itself, such as

integer overflow/underflow and denial of service attacks.

 Business Security

Business security is mainly related to some issues related to the business realized by each project, and

has a relatively strong pertinence. For example, whether the lock-up plan in the code match the white

paper, or the flash loan attack caused by the incorrect setting of the price acquisition oracle.

*Note that the project may suffer stake losses due to the integrated third-party protocol. This is not something

Beosin can control. Business security requires the participation of the project party. The project party and users

need to stay vigilant at all times.



```

Surf protocol Security Audit

Page 21 of 23

3.3 Disclaimer

The Audit Report issued by Beosin is related to the services agreed in the relevant service agreement.

The Project Party or the Served Party (hereinafter referred to as the "Served Party") can only be used

within the conditions and scope agreed in the service agreement. Other third parties shall not transmit,

disclose, quote, rely on or tamper with the Audit Report issued for any purpose.

The Audit Report issued by Beosin is made solely for the code, and any description, expression or

wording contained therein shall not be interpreted as affirmation or confirmation of the project, nor

shall any warranty or guarantee be given as to the absolute flawlessness of the code analyzed, the code

team, the business model or legal compliance.

The Audit Report issued by Beosin is only based on the code provided by the Served Party and the

technology currently available to Beosin. However, due to the technical limitations of any organization,

and in the event that the code provided by the Served Party is missing information, tampered with,

deleted, hidden or subsequently altered, the audit report may still fail to fully enumerate all the risks.

The Audit Report issued by Beosin in no way provides investment advice on any project, nor should it be

utilized as investment suggestions of any type. This report represents an extensive evaluation process

designed to help our customers improve code quality while mitigating the high risks in blockchain.


```

Surf protocol Security Audit

Page 22 of 23

3.4 About Beosin

Beosin is the first institution in the world specializing in the construction of blockchain

security ecosystem. The core team members are all professors, postdocs, PhDs, and Internet

elites from world-renowned academic institutions. Beosin has more than 20 years of research

in formal verification technology, trusted computing, mobile security and kernel security, with

overseas experience in studying and collaborating in project research at well-known

universities. Through the security audit and defense deployment of more than 2,000 smart

contracts, over 50 public blockchains and wallets, and nearly 100 exchanges worldwide,

Beosin has accumulated rich experience in security attack and defense of the blockchain field,

and has developed several security products specifically for blockchain.



Official Website
https://www.beosin.com

Telegram
https://t.me/beosin

Twitter
https://twitter.com/Beosin_com

Email
service@beosin.com

https://www.beosin.com
https://t.me/beosin
https://twitter.com/Beosin_com

	1 Overview
	1.1 Project Overview
	1.2 Audit Overview
	1.3 Audit Method

	2 Findings
	[Surf protocol-01] Centralization Risk
	[Surf protocol-02] Gas Blocking Risk
	[Surf protocol-03] Unreasonable Slippage Setting
	[Surf protocol-04] Fees Lack Approval
	[Surf protocol-05] Incorrect Parameter Usage
	[Surf protocol-06] Redundant Code

	3 Appendix
	3.1 Vulnerability Assessment Metrics and Status in
	3.2 Audit Categories
	3.3 Disclaimer
	3.4 About Beosin


